Search results for: waste to energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3455

Search results for: waste to energy

3065 An Energy-Latency-Efficient MAC Protocol for Wireless Sensor Networks

Authors: Tahar Ezzedine, Mohamed Miladi, Ridha Bouallegue

Abstract:

Because nodes are usually battery-powered, the energy presents a very scarce resource in wireless sensor networks. For this reason, the design of medium access control had to take energy efficiency as one of its hottest concerns. Accordingly, in order to improve the energy performance of MAC schemes in wireless sensor networks, several ways can be followed. In fact, some researchers try to limit idle listening while others focus on mitigating overhearing (i.e. a node can hear a packet which is destined to another node) or reducing the number of the used control packets. We, in this paper, propose a new hybrid MAC protocol termed ELE-MAC (i.e. Energy Latency Efficient MAC). The ELE-MAC major design goals are energy and latency efficiencies. It adopts less control packets than SMAC in order to preserve energy. We carried out ns- 2 simulations to evaluate the performance of the proposed protocol. Thus, our simulation-s results prove the ELE-MAC energy efficiency. Additionally, our solution performs statistically the same or better latency characteristic compared to adaptive SMAC.

Keywords: Control packet, energy efficiency, medium access control, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
3064 Thermo-Elastic Properties of Artificial Limestone Bricks with Wood Sawdust

Authors: Paki Turgut, Mehmet Gumuscu

Abstract:

In this study, artificial limestone brick samples are produced by using wood sawdust wastes (WSW) having different grades of sizes and limestone powder waste (LPW). The thermo-elastic properties of produced brick samples in various WSW amounts are investigated. At 30% WSW replacement with LPW in the brick sample the thermal conductivity value is effectively reduced and the reduction in the thermal conductivity value of brick sample at 30% WSW replacement with LPW is about 38.9% as compared with control sample. The energy conservation in buildings by using LPW and WSW in masonry brick material production having low thermal conductivity reduces energy requirements. A strong relationship is also found among the thermal conductivity, unit weight and ultrasonic pulse velocity values of brick samples produced. It shows a potential to be used for walls, wooden board substitute, alternative to the concrete blocks, ceiling panels, sound barrier panels, absorption materials etc.

Keywords: Limestone dust, masonry brick, thermo-elastic properties, wood sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
3063 Delay and Energy Consumption Analysis of Conventional SRAM

Authors: Arash Azizi-Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

The energy consumption and delay in read/write operation of conventional SRAM is investigated analytically as well as by simulation. Explicit analytical expressions for the energy consumption and delay in read and write operation as a function of device parameters and supply voltage are derived. The expressions are useful in predicting the effect of parameter changes on the energy consumption and speed as well as in optimizing the design of conventional SRAM. HSPICE simulation in standard 0.25μm CMOS technology confirms precision of analytical expressions derived from this paper.

Keywords: Read energy consumption, write energy consumption, read delay, write delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3293
3062 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. Al-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: Adsorption, desalination, refrigeration, seawater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
3061 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: Leaching behaviour, recycling of radioactive concrete, waste management, gamma-ray spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
3060 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does.

In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: Energy-saving, VRF, GHP, EHP, Air Conditioning System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
3059 Energy Efficiency: An Engineering Pathway towards Sustainability

Authors: A. M. Hasna

Abstract:

Today global warming, climate change and energy supply are of greater concern as it is widely realized that the planet earth does not provide an infinite capacity for absorbing human industrialization in the 21st century. The aim of this paper is to analyze upstream and downstream electricity production in selected case studies: a coal power plant, a pump system and a microwave oven covering and consumption to explore the position of energy efficiency in engineering sustainability. Collectively, the analysis presents energy efficiency as a major pathway towards sustainability that requires an inclusive and a holistic supply chain response in the engineering design process.

Keywords: Sustainability, technology, efficiency, engineering, energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
3058 Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource

Authors: Nurhayati Abdullah, Fauziah Sulaiman, Muhamad Azman Miskam, Rahmad Mohd Taib

Abstract:

Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, biooil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudostem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.

Keywords: Banana Waste, Biomass, Renewable Energy, Thermo-chemical Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8732
3057 Performance Analysis of Energy-Efficient Home Femto Base Stations

Authors: Yun Won Chung

Abstract:

The energy consumption of home femto base stations (BSs) can be reduced, by turning off the Wi-Fi radio interface when there is no mobile station (MS) under the coverage of the BSs or MSs do not transmit or receive data packet for long time, especially in late night. In the energy-efficient home femto BSs, if MSs have any data packet to transmit and the Wi-Fi radio interface in off state, MSs wake up the Wi-Fi radio interface of home femto BSs by using additional low power radio interface. In this paper, the performance of the energy-efficient home femto BSs from the aspect of energy consumption and cumulative average delay, and show the effect of various parameters on energy consumption and cumulative average delay. From the results, the tradeoff relationship between energy consumption and cumulative average delay is shown and thus, appropriate operation should be needed to balance the tradeoff.

Keywords: energy consumption, power saving, femto base station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
3056 Energy-Aware Routing in Mobile Wireless Sensor Networks

Authors: R. Geetha, G. Umarani Srikanth, S. Prabhu

Abstract:

Wireless sensor networks are resource constrained networks, where energy is the major resource in such networks. Therefore, energy conservation is major aspect in the deployment of Wireless Sensor Network. This work makes use of an extended Greedy Perimeter Stateless Routing (eGPSR) protocol that mainly focuses on energy efficient data transmission. This data transmission is based on the fact that the message that is sent to a distant node consumes more energy than the message that is sent to a short range transmission. Every cluster contains a head set that consists of many virtual cluster heads. Routing is decided by head set members. The energy level of the received signal is the major constraint to choose head set from its members. The experimental result shows that the use of eGPSR in routing has improved throughput with comparatively less delay.

Keywords: eGPSR, energy efficiency, routing, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
3055 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer

Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal

Abstract:

Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).

Keywords: Biopolymer, lignin, industrial waste, mechanical resistances, self-compacting mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
3054 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level

Authors: Ahmad Rouhani

Abstract:

Iran has several potential for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include photovoltaic system, wind turbine, diesel generator and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.

Keywords: Feasibility, Hybrid Energy System, Iran, Renewable Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
3053 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: Carbon dioxide, energy intensity map, geographic information system, GIS, Hungary, Jewish quarter, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
3052 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: Energy-efficient, fog computing, IoT, telehealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93
3051 Concepts for Designing Low Power Wireless Sensor Network

Authors: Bahareh Gholamzadeh, Hooman Nabovati

Abstract:

Wireless sensor networks have been used in wide areas of application and become an attractive area for researchers in recent years. Because of the limited energy storage capability of sensor nodes, Energy consumption is one of the most challenging aspects of these networks and different strategies and protocols deals with this area. This paper presents general methods for designing low power wireless sensor network. Different sources of energy consumptions in these networks are discussed here and techniques for alleviating the consumption of energy are presented.

Keywords: Energy consumption, MAC protocol, Routing protocol, Sensor node, Topology control, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
3050 Energy Interaction among HVAC and Supermarket Environment

Authors: D. Woradechjumroen, H. Li, Y. Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easyto- use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions).The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study the FDD research for supermarkets in future.

Keywords: Energy interaction, HVAC, R-value, Supermarket buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
3049 Secondary Materials Management in Latvia: Challenges and Possibilities

Authors: N. Kulakova

Abstract:

Thisresearch paper is dedicated to an actual issue in Latvia and in the whole European Union – development of the secondary materials management. The goal of this paper is to research the development of the secondary materials management in Latvia as a result to point out its main positive aspects and problems. In this research paper the author regards following issues: significance of the secondary materials management, current situation of the waste generation and utilization in Latvia comparing with other EU Member States, main problems and positive aspects of the secondary materials management in Latvia. The research author concludes that in last ten years a great work is done to develop the secondary materials market. Nevertheless following improvements are necessary: implementation of the packaging deposit system, development of the separate waste collection, increasing of the recycling capacity.

Keywords: sustainable development, secondary materials, separate waste collection, packaging deposit system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
3048 Studying the Environmental Effects of using Biogas Energy in Iran

Authors: Kambiz Tahvildari, Shakila ila Motamedi

Abstract:

Presently and in line with the United Nations (EPA), human thinking system has shifted towards clean fuels so as to maintain a cleaner environment and to save our planet earth. One of the most successful studies in order to achieve new energies includes the use of animal wastes and their organic residues, and the result of these researches has been represented in the form of very simple and cheap methods called biogas technology. Biogas technology has developed a lot in the recent decades; its reason is the high cost of fossil fuels and the greater attention of countries to the environmental pollutions due to the consumption of this kind of fuels. IRAN is ready for the optimized application of renewable energies, having much enriched resources of this kind of energies; so a special place could be considered for it when making programs. The purpose of biogas technology is the recovery of energy and finally the protection of the environment, which is much appropriate for the third world farmers with respect to their technical abilities and economic potentials. Studies show that the production and consumption of biogas is appropriate and economic in IRAN, because of the high amount of waste in the agriculture sector, the significant amount of animal and human excrement production, the great volume of garbage produced and the most important the specific social, climatic and agricultural conditions in IRAN, in order to proceed towards the reduction of pollution due to the use of fossil fuels.

Keywords: Agriculture, Biogas, Energy, Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
3047 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: Recycled concrete aggregate, re-use, workability, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
3046 JENOSYS: Application of a Web-Based Online Energy Performance Reporting Tool for Government Buildings in Malaysia

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Faiz Fadzil, Mohd Yusof Aizad Mukhtar

Abstract:

One of the areas that present an opportunity to reduce the national carbon emission is the energy management of public buildings. To our present knowledge, there is no easy-to-use and centralized mechanism that enables the government to monitor the overall energy performance, as well as the carbon footprint, of Malaysia’s public buildings. Therefore, the Public Works Department Malaysia, or PWD, has developed a web-based energy performance reporting tool called JENOSYS (JKR Energy Online System), which incorporates a database of utility account numbers acquired from the utility service provider for analysis and reporting. For test case purposes, 23 buildings under PWD were selected and monitored for their monthly energy performance (in kWh), carbon emission reduction (in tCO₂eq) and utility cost (in MYR), against the baseline. This paper demonstrates the simplicity with which buildings without energy metering can be monitored centrally and the benefits that can be accrued by the government in terms of building energy disclosure and concludes with the recommendation of expanding the system to all the public buildings in Malaysia.

Keywords: Energy-efficient buildings. energy management systems, government buildings, JENOSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
3045 Proposals for the Thermal Regulation of Buildings in Algeria: An Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The RTB (Thermal Building Regulation) is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean Region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
3044 New Evaluation Methodology for Solidification Product Durability Assessment

Authors: Bozena Dohnalkova, Jakub Hodul, Rostislav Drochytka, Jana Kosikova

Abstract:

This paper deals with a proposal of a new methodology for durability assessment of solidification product for its safe further use. The new methodology is based on a review of the current state of assessment of treated waste in Czech Republic and abroad. The aim of the paper is to propose an optimal evaluation methodology for verifying properties of solidification product to ensure its safe further use in building industry.

Keywords: Solidification/stabilization, durability, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
3043 Modelling of Energy Consumption in Wheat Production Using Neural Networks “Case Study in Canterbury Province, New Zealand“

Authors: M. Safa, S. Samarasinghe

Abstract:

An artificial neural network (ANN) approach was used to model the energy consumption of wheat production. This study was conducted over 35,300 hectares of irrigated and dry land wheat fields in Canterbury in the 2007-2008 harvest year.1 In this study several direct and indirect factors have been used to create an artificial neural networks model to predict energy use in wheat production. The final model can predict energy consumption by using farm condition (size of wheat area and number paddocks), farmers- social properties (education), and energy inputs (N and P use, fungicide consumption, seed consumption, and irrigation frequency), it can also predict energy use in Canterbury wheat farms with error margin of ±7% (± 1600 MJ/ha).

Keywords: Artificial neural network, Canterbury, energy consumption, modelling, New Zealand, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
3042 The Energy Impacts of Using Top-Light Daylighting Systems for Academic Buildings in Tropical Climate

Authors: M. S. Alrubaih, M. F. M. Zain, N. L. N. Ibrahim, M.A. Alghoul, K. I. Ben Sauod

Abstract:

Careful design and selection of daylighting systems can greatly help in reducing not only artificial lighting use, but also decrease cooling energy consumption and, therefore, potential for downsizing air-conditioning systems. This paper aims to evaluate the energy performance of two types of top-light daylighting systems due to the integration of daylight together with artificial lighting in an existing examinaton hall in University Kebangsaan Malaysia, based on a hot and humid climate. Computer simulation models have been created for building case study (base case) and the two types of toplight daylighting designs for building energy performance evaluation using the VisualDOE 4.0 building energy simulation program. The finding revealed that daylighting through top-light systems is a very beneficial design strategy in reducing annual lighting energy consumption and the overall total annual energy consumption.

Keywords: Academic buildings, Daylighting, Top-lighting, Energy savings, Tropical Climate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
3041 Study on Specific Energy in Grinding of DRACs: A Response Surface Methodology Approach

Authors: Dayananda Pai, Shrikantha S. Rao, Savitha G.Kini

Abstract:

In this study, the effects of machining parameters on specific energy during surface grinding of 6061Al-SiC35P composites are investigated. Vol% of SiC, feed and depth of cut were chosen as process variables. The power needed for the calculation of the specific energy is measured from the two watt meter method. Experiments are conducted using standard RSM design called Central composite design (CCD). A second order response surface model was developed for specific energy. The results identify the significant influence factors to minimize the specific energy. The confirmation results demonstrate the practicability and effectiveness of the proposed approach.

Keywords: ANOVA, Metal matrix composites, Response surface methodology, Specific energy, Two watt meter method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
3040 Adopting Cloud-Based Techniques to Reduce Energy Consumption: Toward a Greener Cloud

Authors: Sandesh Achar

Abstract:

The cloud computing industry has set new goals for better service delivery and deployment, so anyone can access services such as computation, application, and storage anytime. Cloud computing promises new possibilities for approaching sustainable solutions to deploy and advance their services in this distributed environment. This work explores energy-efficient approaches and how cloud-based architecture can reduce energy consumption levels amongst enterprises leveraging cloud computing services. Adopting cloud-based networking, database, and server machines provide a comprehensive means of achieving the potential gains in energy efficiency that cloud computing offers. In energy-efficient cloud computing, virtualization is one aspect that can integrate several technologies to achieve consolidation and better resource utilization. Moreover, the Green Cloud Architecture for cloud data centers is discussed in terms of cost, performance, and energy consumption, and appropriate solutions for various application areas are provided.

Keywords: Greener Cloud, cloud computing, energy efficiency, energy consumption, metadata tags, Green Cloud Advisor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
3039 Combining Minimum Energy and Minimum Direct Jerk of Linear Dynamic Systems

Authors: V. Tawiwat, P. Jumnong

Abstract:

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper proposes a simple yet very interesting when combining the minimum energy and jerk of indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of the minimum energy, the minimum jerk and combining them together are found using the dynamic optimization methods together with the numerical approximation. This is to allow us to simulate and compare visually and statistically the time history of state inputs employed by combining minimum energy and jerk designs. The numerical solution of minimum direct jerk and energy problem are exactly the same solution; however, the solutions from problem of minimum energy yield the similar solution especially in term of tendency.

Keywords: Optimization, Dynamic, Linear Systems, Jerks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
3038 Impacts of Building Design Factors on Auckland School Energy Consumptions

Authors: Bin Su

Abstract:

This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.

Keywords: Building energy efficiency, Building thermal design, Building thermal performance, School building design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
3037 A Study on the Pressure Void Ratio Relationship for Rock Powder Blends with Brick Dust

Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan

Abstract:

Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forces the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick dust (BD) was mixed with rock powder (RP) in 0%, 5%, 10%, 20%, 30%, 40%, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with BD added.

Keywords: Waste material, oedometer test, environmental geotechnics, sustainability, crushed brick dust, rock powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219
3036 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762