Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31100
Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova


This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: Re-use, compressive strength, workability, recycled concrete aggregate

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538


[1] M. Batayneh, I. Marie and I. Asi, “Use of selected waste materials in concrete mixes,“ Waste management, vol. 27, pp. 1870-1876, 2007.
[2] M. Berry, D. Cross, and J. Stephens, “Changing the Environment: An Alternative “Green” Concrete Produced without Portland cement,” in World of Coal Ash Conf., Lexington, KY, USA, 2009, pp. 1-11.
[3] M. Glavind, and C. Munch-Petersen, “Green concrete in Denmark,” Structural Concrete, vol. 1, no.1, pp. 1-6, 2000.
[4] A. Srivastava, Seminar report on Green Concrete. Kanpur: Harcout Butler Technological Institute, 2011 (Online). Available:
[5] N. Junakova and M. Balintova, “The study of bottom sediment characteristics as a material for beneficial reuse,” Chemical engineering, vol. 39, pp. 637-642, 2014.
[6] M. Ondova and A. Estokova, “Analysis of the environmental impact of concrete-framed family house using lca method,” Ciencia E Tecnica Vitivinicola, vol. 29, no. 7, pp. 267-376, 2014.
[7] A. Sicakova and K. Urban, “Trends in types and technologies of concretes for prefabrication,“ in Improving the efficiency of construction through MMC technologies: Proceedings of scientific papers, TU: Kosice, 2014, pp. 71-78.
[8] M. Ondova and A. Sicakova, “Review of current trends in ways of fly ash application“, in SGEM 2014: Geoconference on Ecology, Economics, Education and Legislation, Sofia: STEF92 Technology, 2014, pp. 603-610.
[9] N. Stevulova and J. Junak, “Alkali-activated binder based on coal fly ash, “Chemicke listy, vol. 108, no. 6, pp. 620-623, 2014.
[10] J. Anderson, H. Meryman, and K. Porsche, “Sustainable Building Materials in French Polynesia,“ International Journal for Service Learning in Engineering, vol. 2, no. 2, pp. 102-130, 2007
[11] M. Blanco-Carrasco, F. Hornung, and N. Ortner. Qatar: Green Concrete Technologies. Towards a Sustainable Concrete Industry in Qatar, 2010 (Online). Available: files.nsf/SearchView/61609E5C572EDF8DC12578870037C6F3/$File/g reen-concrete.pdf.
[12] J. Junak and N. Stevulova, “Natural aggregate replacement by recycled materials in concrete production,“ Visnik Nacionaľnogo universitetu Ľvivska politechnika: teorija i praktika budivnictva, no. 756, pp. 63-68, 2013.
[13] V. Vaclavik, V. Dirner, T Dvorsky and J. Daxner, “Use of blast furnace slag, “Metalurgija, vol. 51, no.4, pp. 461-464, 2012.
[14] P. Demeter, D Baricova and A. Pribulova, “Potential cupola slag utilization in the production of concrete,“ Prace Instytutu Metalurgii Zelaza, vol. 64, no.5, pp. 13-14, 2009.
[15] J. Junak and A. Sicakova, “Glass waste as an alternative to natural aggregate,“ in International Multidisciplinary scientific Geoconference, Sofia: STEF92 Technology, 2014, pp. 321-326.
[16] M. Malesev, V. Radonjanin and S. Marinkovic, “Recycled concrete as aggregate for structural concrete production, “Sustainability, vol. 2, no. 5, pp. 1204-1225, 2010.
[17] M. Boltryk, D. Malaszkiewicz and E. Pawluczuk, “Basis technical properties of recycled aggregate concrete,“ in Proceedings of the 9th International Conference: Modern building materials, structures and techniques, Vilnus, Lithuania, 2007.