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Abstract—Both the minimum energy consumption and 

smoothness, which is quantified as a function of jerk, are generally 
needed in many dynamic systems such as the automobile and the 
pick-and-place robot manipulator that handles fragile equipments.  
Nevertheless, many researchers come up with either solely 
concerning on the minimum energy consumption or minimum jerk 
trajectory. This research paper proposes a simple yet very interesting 
when combining the minimum energy and jerk of indirect jerks 
approaches in designing the time-dependent system yielding an 
alternative optimal solution.  Extremal solutions for the cost functions 
of the minimum energy, the minimum jerk and combining them 
together are found using the dynamic optimization methods together 
with the numerical approximation.  This is to allow us to simulate 
and compare visually and statistically the time history of state inputs 
employed by combining minimum energy and jerk designs. The 
numerical solution of minimum direct jerk and energy problem are 
exactly the same solution; however, the solutions from problem of 
minimum energy yield the similar solution especially in term of 
tendency. 
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I.  INTRODUCTION 
OST of the robots and advanced mobile machines 
nowadays are designed so that they are either optimized 

on their energy consumption or on their greatest smoothness 
of motion, [3].  Consequently, the trajectory planning and 
designs of these robots are done exclusively through many 
approaches such as the minimum energy and minimum jerk, 
[4].  Nevertheless, in some applications, the robot is needed to 
work very smoothly in order to avoid damaging the specimen 
that the robot is handling while consuming least amount of 
energy at the same time.  In other words, we may want to 
minimize the jerk of the movement of the robot as to give it 
the smoothest motion as well as optimize that robot in the 
energy consumption issue.   

The general format of the dynamic problems is consisting 
of the equation of motion, the initial conditions, and the 
boundary conditions.  The area of interest in this paper will 
involve the problems with two-point-boundary-value 
conditions.  Each of the problems may contain many possible 
solutions depending on the objective of application.  
Obviously, the robot that aims to run at lowest cost of energy 
will be designed to have the lowest actuator inputs during the 
motion.  This is basically the optimization problem of the 
dynamic systems. Research shows that many of the 
researchers pay a lot of their attention on the minimization of  
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energy while many tend to seek for the smoothness of the 
system.  According to the second law of Newton’s laws, there 
is a relationship between acceleration and summation of all 
forces including the control inputs of any linear dynamic 
system.  By taking derivative with respect to time, there is a 
relationship between derivative of the acceleration called Jerk 
and derivative of all forces including the derivative of the 
control inputs of the dynamic system.  In this paper, the 
derivative of the control inputs with respect to time are called 
indirect jerks.  This has been proof that the solutions from 
both yield the same answers while considering indirect jerk 
has some specific advantage such as the optimality conditions 
and the CPU runtime [6].  However, in order to compare here 
the direct jerk has been used instead since both have the same 
numerical solutions. 

Therefore, this research paper aims to search for the 
solutions while combining the minimum energy and minimum 
jerk by using the optimization method so that this new 
alternative can be put into applications. 

 

II.  PROBLEM STATEMENT 
Dynamic systems can be described as the first order 

derivative function of state as 
 

nituuxxfx mnii ,...,1     );,,...,,...,( 11 ==& ,          (1) 
 

where nRx∈ , mRu∈ and t  are state, control input, and 
time respectively, [5].  The problem of interest is to find the 
states x(t) and control inputs u(t) that make our system 
operates according to the desired objective of minimum both 
energy and jerk.  Note that this paper is focusing on the system 
with fixed end time and fixed end points.  Therefore, states 
and control inputs that serve the necessary condition must also 
be able to bring the system from initial conditions x(t0) at 
initial time t0 to the end point x(tf) at time tf. 

The optimization problem of minimum energy will take the 
form of  

dtuJ
ft

t

m

i
i∫∑

=

=
0

1

2 ,                                    (2) 

 
where ui is the control input, which can be force or torque 
applied to the system, and mi ,...,1= .  J is the cost function 
of the energy consumed by the system from initial time t0 to 
end time tf.   
 The same kind of concept is used to the minimum jerk 
problem.  It is well known that jerk is the change of input 
force with respect to time.  It is, thus, the third derivative with 
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respect to time of x, or first order derivative of control input u.  
Therefore, 

uxJerk &&&& ∝=  .                                 (3) 
Defining 
 

uu ~=& ,                                            (4) 
 
so that (1) becomes 
 

mnituuxxfx mmnii +== + ,...,1   );,~,...~,,...,( 11& .     (5) 
 
From now on, u~  is treated as a variable and as the control 
input of our dynamic system.  Consequently, (2) can be 
rewritten for the objective function of the minimum indirect 
jerk problem as 
 

dtuJ
ft

t

m

i
i∫∑

=

=
0

1

2~ .                             (6) 

 
Similarly, (2) also can be rewritten for the objective function 
of the minimum direct jerk problem as 
 

dtxJ
ft

t

n

i
i∫∑

=

=
0

1

2&&& .                             (7) 

 
This time, J is the cost function of the jerks.  Once the jerk 
variable has been added to the dynamic system, the objective 
function can have both energy and jerk combined as 
 

dtuxJ
m

i
i

t
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Which allow one to investigate the solution and compare with 
the problem that considers only minimum energy or minimum 
jerk. 
 

III.  NECESSARY CONDITIONS 

In this paper, we use the calculus of variations in solving for 
the extremal solutions of the dynamic system, [1].  
Representing the control input with u, the principle of calculus 
of variations helps us solve the optimization problem by 
finding the time history of the control input that would 
minimize the cost function of the form 
 

=J
ftnxxt ),...,,( 1φ + dtuuxxtL

ft

t
mn∫

0

),...,,,...,,( 11 , (9) 

where  
 

ftnxxt ),...,,( 1φ ,                                   (10) 

 

is the cost based on the final time and the final states of the 
system, and  
 

dtuuxxtL
f

i

t

t
mn∫ ),...,,,...,,( 11 ,                     (11) 

 
is an integral cost dependent on the time history of the state 
and control variables.  Since the cost of the final states would 
be equal in all feasible time histories of the control input; 
therefore, the first term of (9) is omitted. 
 To find the extremum of the function, the dynamic 
equations are augmented via Lagrange Multipliers to the cost 
functional as follow: 
 

),...,,,...,(' 11 mn uuxxJ = dtuuxxtL
f

i

t

t
mn∫ ),...,,,...,,(' 11 .        (12) 

Where  

),...,,,...,,(' 11 mn uuxxtL  = )(
1
∑
=

+
n

i
ii fL λ  ,           (13) 

and )(tiλ  are Lagrange multipliers.  Consequently, (12) 
becomes: 
 

),...,,,...,(' 11 mn uuxxJ = ∫
ft

it
mn uuxxtL ),...,,,...,,([ 11  

∑
=

−+
n

i
mniii dtuuxxtfxt

1
11 )]],...,,,...,,()[( &λ       (14) 

 
 Since the problem with fixed end time and end points are 
considered, initial time t0, end time tf, initial state x(t0), and 
final state x(tf) must be set prior to solving the problem.  The 
differentiable functions are dependent on the boundary 
condition of x(t0)= x0, x(tf)= xf , u(t0)= u0 and u(tf)= uf  where 
time used falls in the interval fi ttt ≤≤ .  
 Let function ( )nmn xxuuxxtL && ,...,,,...,,,...,, 111

 be represented as 
a functional 
 

                     [ ]=mn uuxxJ ,...,,,..., 11  

( )dtxxuuxxtL
ft

t
nmn∫

0

,...,,,...,,,...,, 111 &&              (15) 

 
Let )( 0tx  be incremented by )( 0thxj , u(t0) be incremented 

by )( 0thuk
, and still satisfy the boundary conditions, then 

)( 0thxj  )( fxj th=  )( 0thuk=  )( fuk th=  0= .  So, the 
change in functional JΔ  will be  

 
=ΔJ [ ]ukmuxjnx huhuhxhxJ ++++ ,...,,,..., 1111  

[ ]
    

,...,,,..., 11 mn uuxxJ−  
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( )
dt
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huhuhuhu
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 Applying Taylor’s Series to (16), disregard the higher order 
terms, and apply it to the problem results in 
 

δ 'J = dtjxh
jx

L
dt
d

jx
Lft

it

n

j
  )''(

1
∫∑ ∂

∂
−

∂
∂

= &
 

                 + dtku)h
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L
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             ∑
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&&

 

            +∑
= ∂

∂
−

∂
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j
itft jxh

jx
L

jxh
jx

L
1

)|'|'(
&&

                  (17) 

  
 Since 

itft jxhjxh |  | = = 0 and 
ku

L
&∂
∂ ' = 0, the last two terms 

of (17) become zero.  In order that the cost functional of jerk 
in (14) can be solved for minimal solution, the condition that 
make 0' =Jδ  at arbitrary variation of jxh  and kuh  are 

needed.  From (17), obviously the mentioned conditions are as 
follow: 

 

dt
d

jx
L
−

∂
∂ '

jx
L
&∂

∂ '
= 0,                              (18) 

 
and 
  

dt
d

ku
L

−
∂
∂ '

ku
L
&∂
∂ '

= 0,                             (19) 

 
for j = 1, …, n and k = 1, …, m. 
 Equations (17) and (18) are the necessary conditions that 
will lead to solve for Lagrange multipliers )(tjλ , and control 
inputs uk(t).  Alternatively, we can use the derived relationship 
below to solve for the unknowns necessary conditions: 
For 

 
nituuxxfx mnii ,...,1     ),,,...,,...,( 11 ==&         (20) 

 
Necessary conditions are (20) and  
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=

=
∂
∂

−
∂
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1

,...,1     ,λλ& ,             (21) 

 

∑
=

==
∂
∂

+
∂
∂ n

i

mk
ku
ifi

ku
L

1

,...,1     ,0λ .           (22) 

 
As of above the necessary conditions are in the form of 
differential and algebraic equations which are known as two-
point boundary valued problem, [2]. 
 

IV.  EXAMPLE PROBLEMS 

 
Fig. 1 Two degree of-freedom of spring mass and damper system 

 
The procedure outlined in this paper for dynamic 

optimization is illustrated with the following example of a two 
degree-of-freedom spring-mass-damper system sketched in 
equation as  
 

BuxA =&                                        (23) 
 
The matrices A  and B  for this system is as follows: 
 

⎥
⎦

⎤
⎢
⎣

⎡ −−
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−−
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I
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A                         (24) 
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⎥
⎥
⎥
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⎣

⎡

=

00
00
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2

1

m

m

B                                    (25) 

 
where the matricesM ,C  and K  are: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

=⎥
⎦

⎤
⎢
⎣

⎡
=

322

221

2

1 ,
0

0
ccc

ccc
C

m
m

M             (26) 

⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

=
322

221

kkk
kkk

K                            (27) 

 
The equation (23) can also be rewritten in the second order 
differential equation according to the second law of Newton.  
The parameters used in the model in MKS units are: 

0.121 == mm , 0.131 == cc , 0.22 =c , 

0.3321 === kkk .  The boundary conditions are 

( )Ttx 0000)( 0 =  and )( ftx  ( )T0011= , where 
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00 =t  and 0.1=ft . In addition, the constraint of the 

control input .2,1,44 =≤≤− iui  

A.  Minimum Energy Problem 
 The cost function of minimum direct jerk is defined as 
 

dtuuJ ∫ +=
1

0

2
2

2
1 .                               (28) 

 
 In order for the cost function in (28) to be minimized, the 
Calculus of Variations as stated in previous section has been 
used. 

B.  Minimum Direct Jerk Problem 
 The cost function of minimum indirect jerk is also defined 
as 
 

dtxxJ ∫ +=
1

0

2
2

2
1 &&&&&& .                            (29) 

 
 Similarly for (29) to be minimized, the Calculus of 
Variations must be applied here. 

C.  Minimum Energy and Minimum Jerk Problem 
 The cost function of minimum indirect jerk is also defined 
as 
 

dtuuxxJ ∫ +++=
1

0

2
2

2
1

2
2

2
1

~~&&&&&& .                (30) 

 
 This problem is also in the form that needs the Calculus of 
Variations. 

D.  Numerical Results 
 The minimum jerk problem has the exact same format as the 
minimum energy problem in (2).  However, since the time 
derivative of control inputs are considered, the (23) must be 
rewritten as to include the consideration of jerk into the 
system: 
 

.~6332

~3623

2
2

21212

1
1

21211

u
dt

duxxxxx

u
dt

duxxxxx

==+−+−

==−+−+

&&&&&&&&&

&&&&&&&&&

 

 
These new equations are suitable to add jerks in to the 
objective function as shown in (30).   Therefore, the extra 
boundary conditions can be applied at both ends that are 

( )Ttu 00)( 0 =  and )( ftu  ( )T00= .  These conditions can 
be applied in the numerical scheme through the original 
dynamic equations as follow: 
 

.6332
3623

221212

121211

uxxxxx
uxxxxx

=+−+−
=−+−+

&&&&

&&&&
 

 By using software developed by Tawiwat Veeraklaew, [6], 
these problems can be solved to obtain the optimal solutions.  
The idea behind this software is to transform the necessary 
conditions of the dynamic optimization to static optimization.  
Then one kind of the well known methods called nonlinear 
programming or linear programming has been used to solve 
for all parameters that are parameterized through collocation 
technique.  The comparison for each variable such as state and 
control variables of the dynamic systems in this example are 
shown in figure below as Fig. 2 to Fig. 9. 
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Fig. 2 Solutions of )(1 tx  from minimum direct jerk and combining 

minimum jerk and energy 
 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time  
Fig. 3 Solutions of )(1 tx&  from minimum direct jerk and combining 

minimum jerk and energy 
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Fig. 4 Solutions of )(2 tx  from minimum direct jerk and combining 

minimum jerk and energy 
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Fig. 5 Solutions of )(2 tx&  from minimum direct jerk and combining 

minimum jerk and energy 
 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time  
Fig. 6 Solutions of )(1 tx  from minimum energy 
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Fig. 7 Solutions of )(1 tx&  from minimum energy 
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Fig. 8 Solutions of )(2 tx  from minimum energy 
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Fig. 9 Solutions of )(2 tx&  from minimum energy 

 
 From the solutions above, )(1 tx , )(1 tx& , )(2 tx  and )(2 tx&  
from both minimum direct jerk and combining minimum jerk 
and energy  have exactly the same solutions which can be seen 
obviously as shown in Fig. 2 to Fig. 5.  The solution from 
minimum energy are different comparing to both problem in 
Fig. 2 to Fig.5; however, the tendency of the solutions of 

)(1 tx , )(1 tx& , )(2 tx  and )(2 tx&  are quite similar as shown 
in Fig. 6 to Fig. 9.  
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 In conclusion, the numerical solution of minimum direct jerk 
and energy problem are exactly the same solution; however, 
the solutions from problem of minimum energy yield the 
similar solution especially in term of tendency.  This can be 
concluded that the specify cost functions used in this paper of 
minimum direct jerk and combining direct jerk and energy do 
not have any effect to the solution of minimum direct jerk at 
all.  According to the cost function of minimum direct jerk and 
energy, the factors of both terms called jerk and energy are 
equal to one.  This might be the reason; therefore, these factors 
can be varied and adjusted in the future work. 
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