Search results for: river flow time series
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8928

Search results for: river flow time series

8538 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh

Abstract:

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Keywords: Least Squares, Moving node, Pitching, Spirals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
8537 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method

Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei

Abstract:

As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.

Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
8536 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

Authors: M. Hakak Khadem, M. Shams, S. Hossainpour

Abstract:

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Keywords: Relative roughness, slip flow, Poiseuille number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
8535 Simulation and Analysis of Control System for a Solar Desalination System

Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan

Abstract:

Fresh water is one of the resources which is getting depleted day by day. A wise method to address this issue is by the application of renewable energy-sun irradiation and by means of decentralized, cheap, energetically self-sufficient, robust and simple to operate plants, distillates can be obtained from sea, river or even sewage. Solar desalination is a technique used to desalinate water using solar energy. The present work deals with the comprehensive design and simulation of solar tracking system using LabVIEW, temperature and mass flow rate control of the solar desalination plant using LabVIEW and also analysis of single phase inverter circuit with LC filters for solar pumping system in MATLAB. The main objective of this work is to improve the performance of solar desalination system using automatic tracking system, output control using temperature and mass flow rate control system and also to reduce the harmonic distortion in the solar pumping system by means of LC filters. The simulation of single phase inverter was carried out using MATLAB and the output waveforms were analyzed. Simulations were performed for optimum output temperature control, which in turn controls the mass flow rate of water in the thermal collectors. Solar tracking system was accomplished using LABVIEW and was tested successfully. The thermal collectors are tracked in accordance with the sun’s irradiance levels, thereby increasing the efficiency of the thermal collectors.

Keywords: Desalination, Electro dialysis, LabVIEW, MATLAB, PWM inverter, Reverse osmosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
8534 Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities

Authors: Shiferaw R. Jufar, Rong F. Huang, Ching M. Hsu

Abstract:

The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.

Keywords: Acoustic excitation, double–concentric jets, flow control, swirling jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
8533 Optimal Control for Coordinated Control of SVeC and PSS Damping Controllers

Authors: K. Himaja, T. S. Surendra, S. Tara Kalyani

Abstract:

In this article, Optimal Control for Coordinated Control (COC) of Series Vectorial Compensator (SVeC) and Power System Stabilizer (PSS) in order to damp Low Frequency Oscillations (LFO) is proposed. SVeC is a series Flexible Alternating Current Transmission System (FACTS) device. The Optimal Control strategy based on state feedback control for coordination of PSS and SVeC controllers under different loading conditions has not been developed. So, the Optimal State Feedback Controller (OSFC) for incorporating of PSS and SVeC controllers in COC manner has been developed in this paper. The performance of the proposed controller is checked through eigenvalue analysis and nonlinear time domain simulation results. The proposed Optimal Controller design for the COC of SVeC and PSS results will be analyzed without controller. The comparative results show that Optimal Controller for COC of SVeC and PSSs improve greatly the system damping LFO than without controller.

Keywords: Coordinated control, damping controller, optimal state feedback controller, power system stabilizer, series vectorial compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
8532 Sediment Transport Monitoring in the Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando

Abstract:

The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.

Keywords: Acoustic Doppler current profiler, time series, port construction, construction around coral reefs, sediment transport monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
8531 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
8530 Runtime Monitoring Using Policy Based Approach to Control Information Flow for Mobile Apps

Authors: M. Sarrab, H. Bourdoucen

Abstract:

Mobile applications are verified to check the correctness or evaluated to check the performance with respect to specific security properties such as Availability, Integrity and Confidentiality. Where they are made available to the end users of the mobile application is achievable only to a limited degree using software engineering static verification techniques. The more sensitive the information, such as credit card data, personal medical information or personal emails being processed by mobile application, the more important it is to ensure the confidentiality of this information. Monitoring untrusted mobile application during execution in an environment where sensitive information is present is difficult and unnerving. The paper addresses the issue of monitoring and controlling the flow of confidential information during untrusted mobile application execution. The approach concentrates on providing a dynamic and usable information security solution by interacting with the mobile users during the runtime of mobile application in response to information flow events.

Keywords: Mobile application, Run-time verification, Usable security, Direct information flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
8529 Calibration of Syringe Pumps Using Interferometry and Optical Methods

Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins

Abstract:

Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.

Keywords: Calibration, interferometry, syringe pump, optical method, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
8528 Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior

Authors: Shinji Kajiwara

Abstract:

The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.

Keywords: Hydraulics, Pipe Flow, Numerical Simulation, Flow Visualization, Check ball, L-shaped Pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
8527 Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes

Authors: Olumuyiwa A. Lasode, Tajudeen O. Popoola, B. V. S. S. S. Prasad

Abstract:

Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.

Keywords: Elliptic Pipes, Liquefied Petroleum Gas, Numerical Study, Pressure Drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
8526 Bacteria Flora in the Gut and Respiratory Organs of Clarias gariepinus in Fresh and Brackish Water Habitats of Ondo State, South/West Nigeria

Authors: Nelson R. Osungbemiro, Rafiu O. Sanni, Rotimi F. Olaniyan, Abayomi O. Olajuyigbe

Abstract:

Bacteria flora of Clarias gariepinus collected from two natural habitats namely Owena River (freshwater) and Igbokoda lagoon (brackish water) were examined using standard microbiological procedures. Thirteen bacterial species were identified. The result indicated that from the identified bacteria isolated, Vibrio sp, Proteus sp. Shigella sp. and E. coli were present in both habitats (fresh and brackish waters). Others were habitat-selective such as Salmonella sp., Pseudomonas sp, Enterococcus sp, Staphylococcus sp. that were found only in freshwater habitat. While Branhamella sp, Streptococcus sp. and Micrococcus sp. were found in brackish water habitat. Bacteria load from Owena river (freshwater) was found to be the highest load recorded at 6.21 x 104cfu. T-test analysis also revealed that there was a marked significant difference between bacterial load in guts of sampled Clarias from fresh water and brackish water habitats.

Keywords: Bacteria flora, gut, Clarias gariepinus, Owena river

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
8525 CFD Effect of the Tidal Grating in Opposite Directions

Authors: N. M. Thao, I. Dolguntseva, M. Leijon

Abstract:

Flow blockages referring to the increase in flow are being considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. The flow characteristics are studied by Computational Fluid Dynamic simulation by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinguished characteristics of flow velocity between “convergent” and “divergent” grating placements is up to 10% in confined conditions. Furthermore, the velocity in case of convergent grating is higher than that of divergent grating.

Keywords: Marine current energy, marine current energy converter, turbine grating, RANS simulation, water flow velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
8524 Multi-Line Power Flow Control using Interline Power Flow Controller (IPFC) in Power Transmission Systems

Authors: A.V.Naresh Babu, S.Sivanagaraju, Ch.Padmanabharaju, T.Ramana

Abstract:

The interline power flow controller (IPFC) is one of the latest generation flexible AC transmission systems (FACTS) controller used to control power flows of multiple transmission lines. This paper presents a mathematical model of IPFC, termed as power injection model (PIM). This model is incorporated in Newton- Raphson (NR) power flow algorithm to study the power flow control in transmission lines in which IPFC is placed. A program in MATLAB has been written in order to extend conventional NR algorithm based on this model. Numerical results are carried out on a standard 2 machine 5 bus system. The results without and with IPFC are compared in terms of voltages, active and reactive power flows to demonstrate the performance of the IPFC model.

Keywords: flexible AC transmission systems (FACTS), interline power flow controller (IPFC), power injection model (PIM), power flow control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
8523 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda

Abstract:

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
8522 A Study on the Waterfront Scales around Small Rivers

Authors: Gwang-Soon Lim, Jae-One Jung, Dae-HeeKim, Hong-SeokKim

Abstract:

The purpose of this study was to suggest some optimal waterfront scales around small rivers by reviewing domestic and foreign survey reports about concept and relevant systems of the ecological cities, analyzing the data collected from a survey about scales and facilities of waterfront green zones around small rivers. The questionnaire survey was conducted by sampling professional designers, developers, the citizens living in the GunpoSanbon district covered by no river system and the citizens living in such districts covered by a river system. The question items were about need, uses, scale and facilities of waterfront in common, and about satisfaction with waterfront in case of citizen groups. In short, most of the subjects in 5 groups preferred 10~20 wide waterfront green zone. And it is judged that the results of this study about uses and facilities of the waterfront green zone and its scales would provide for some basic data useful to future waterfront green zone and urban development plans.

Keywords: Ecological city, Small river, Waterfront zone, Urban development plan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
8521 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions

Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din

Abstract:

Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.

Keywords: Photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
8520 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
8519 CFD Simulation of Non-Newtonian Fluid Flow in Arterial Stenoses with Surface Irregularities

Authors: R. Manimaran

Abstract:

CFD simulations are carried out in arterial stenoses with 48 % areal occlusion. Non-newtonian fluid model is selected for the blood flow as the same problem has been solved before with Newtonian fluid model. Studies on flow resistance with the presence of surface irregularities are carried out. Investigations are also performed on the pressure drop at various Reynolds numbers. The present study revealed that the pressure drop across a stenosed artery is practically unaffected by surface irregularities at low Reynolds numbers, while flow features are observed and discussed at higher Reynolds numbers.

Keywords: Blood flow, Roughness, Computational fluid dynamics, Bio fluid mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4462
8518 Data and Control Flow Analysis of VDMµ Specifications

Authors: Mubina Nazmeen, Iram Rubab

Abstract:

Formal Specification languages are being widely used for system specification and testing. Highly critical systems such as real time systems, avionics, and medical systems are represented using Formal specification languages. Formal specifications based testing is mostly performed using black box testing approaches thus testing only the set of inputs and outputs of the system. The formal specification language such as VDMµ can be used for white box testing as they provide enough constructs as any other high level programming language. In this work, we perform data and control flow analysis of VDMµ class specifications. The proposed work is discussed with an example of SavingAccount.

Keywords: VDM-SL, VDMµ, data flow graph, control flowgraph, testing, formal specification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4353
8517 Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation

Authors: Nahid Ghasemi, Morteza Sohrabi, Yasan Soleymani

Abstract:

The quantified residence time distribution (RTD) provides a numerical characterization of mixing in a reactor, thus allowing the process engineer to better understand mixing performance of the reactor.This paper discusses computational studies to investigate flow patterns in a two impinging streams cyclone reactor(TISCR) . Flow in the reactor was modeled with computational fluid dynamics (CFD). Utilizing the Eulerian- Lagrangian approach, implemented in FLUENT (V6.3.22), particle trajectories were obtained by solving the particle force balance equations. From simulation results obtained at different Δts, the mean residence time (tm) and the mean square deviation (σ2) were calculated. a good agreement can be observed between predicted and experimental data. Simulation results indicate that the behavior of complex reactor systems can be predicted using the CFD technique with minimum data requirement for validation.

Keywords: Impinging streams reactor, Residence timedistribution, CFD, Eulerian-Lagrangian approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
8516 Fluid Flow Analysis and Design of a Flow Distributor in a Domestic Gas Boiler Using a Commercial CFD Software

Authors: Lukasz Peronski, Roy Bratley, Derek B. Ingham, Lin Ma, Mohamed Pourkashanian, StephenTaylor

Abstract:

The aim of the study was to investigate the possible use of commercial Computational Fluid Dynamics (CFD) software in the design process of a domestic gas boiler. Because of the limited computational resources some simplifications had to be made in order to contribute to the design in a reasonable timescale. The porous media model was used in order to simulate the influence of the pressure drop characteristic of particular elements of a heat transfer system on the water-flow distribution in the system. Further, a combination of CFD analyses and spread sheet calculations was used in order to solve the flow distribution problem.

Keywords: CFD, domestic gas boilers, flow distribution, heatexchanger, porous media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
8515 The Experimental Study of the Effect of Flow Pattern Geometry on Performance of Micro Proton Exchange Membrane Fuel Cell

Authors: Tang Yuan Chen, Chang Hsin Chen, Chiun Hsun Chen

Abstract:

In this research, the flow pattern influence on performance of a micro PEMFC was investigated experimentally. The investigation focused on the impacts of bend angels and rib/channel dimensions of serpentine flow channel pattern on the performance and investigated how they improve the performance. The fuel cell employed for these experiments was a micro single PEMFC with a membrane of 1.44 cm2 Nafion NRE-212. The results show that 60° and 120° bend angles can provide the better performances at 20 and 40 sccm inlet flow rates comparing to that the conventional design. Additionally, wider channel with narrower rib spacing gives better performance. These results may be applied to develop universal heuristics for the design of flow pattern of micro PEMFC.

Keywords: Flow pattern, MEMS, PEMFC, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
8514 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers

Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman

Abstract:

Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.

Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
8513 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation

Authors: Aritras Roy, Rinku Mukherjee

Abstract:

The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.

Keywords: Post-stall, unsteady, wing, aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
8512 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

Background: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, for which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. Objective: This article tried to optimize the layout of a troops’ cafeteria and to improve the overall efficiency of the dining process. Methods: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. Results: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interferences reduced as well, which verified corresponding simulation results. Conclusion: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: Troops’ cafeteria, layout optimization, dining efficiency, AnyLogic simulation, field experiment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
8511 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

Keywords: Fractional flow curve, oil recovery, relative permeability, water fingering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
8510 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages

Authors: Y. Galerkin, A. Rekstin, K. Soldatova

Abstract:

Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrates ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φ des deserves additional study.

Keywords: Centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3170
8509 Description of Unsteady Flows in the Cuboid Container

Authors: K. Horáková, K. Fraňa, V. Honzejk

Abstract:

This part of study deals with description of unsteady isothermal melt flow in the container with cuboid shape. This melt flow is driven by rotating magnetic field. Input data (instantaneous velocities, grid coordinates and Lorentz forces) were obtained from in-house CFD code (called NS-FEM3D) which uses DDES method of computing. Description of the flow was performed by contours of Lorentz forces and caused velocity field. Taylor magnetic numbers of the flow were used 1.10^6, 5.10^6 and 1.10^7, flow was in 3D turbulent flow regime.

Keywords: In-house computing code, Lorentz forces, magnetohydrodynamics, rotating magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564