
 

 

  
Abstract—This paper examines long-range dependence or long-

memory of financial time series on the exchange rate data by the 
fractional Brownian motion (fBm). The principle of spectral density 
function in Section 2 is used to find the range of Hurst parameter (H) 
of the fBm.  If 0< H <1/2, then it has a short-range dependence 
(SRD). It simulates long-memory or long-range dependence (LRD) if 
1/2< H <1. The curve of exchange rate data is fBm because of the 
specific appearance of the Hurst parameter (H). Furthermore, some 
of the definitions of the fBm, long-range dependence and self-
similarity are reviewed in Section II as well. Our results indicate that 
there exists a long-memory or a long-range dependence (LRD) for 
the exchange rate data in section III.  Long-range dependence of the 
exchange rate data and estimation of the Hurst parameter (H) are 
discussed in Section IV, while a conclusion is discussed in Section V.  

 
Keywords—Fractional Brownian motion, long-range 

dependence, memory, short-range dependence. 

I. INTRODUCTION 
HE fractional Brownian motion(fBm) is a generalisation  
of the Brownian motion(Bm) with the Hurst parameter(H) 

or the index of self-similarity. It is also known as the random 
walk process. A random walk is called the Brownian motion 
(Weiner Process) when H=1/2. But the fractional Brownian 
motion data sets where 0< H <1/2 and 1/2< H <1 simulate 
short-range dependence (SRD) and long-range 
dependence(LRD), respectively.  Moreover, the fBm is 
defined as a Gaussian process with stationary increments as 
well.  
    An approach to model financial processes with long-
memory is via the theory of stochastic differential equations 
derived by fractional Brownian motion (Dai and Heyde [7], 
Comte and Renault [5],[6],  Norros, Valkeila and Virtamo 
[16], Alos, Mazet and Nualart [1]).   In this approach, the 
effect of LRD can be obtained from the noise term. Recently, 
Heyde [11]) proposed a risky asset model with LRD through 
fractal activity time. The idea is to replace Brownian time in 
geometric Brownian motion by some process with stationary 
LRD increments and heavy tails. 

The existence of long-memory behavior of exchange rates 
can be related to the dynamic properties of other economic 
variables. The purchasing power parity (PPP) hypothesis 
suggests that exchange rate fluctuations are tied to the 
movements of relative national prices (Cheung[4]). 
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Furthermore, the researchers pay particular emphasis on the 
implications of long-memory for market efficiency. According 
to the market efficiency hypothesis in its weak form, asset 
prices incorporate all relevant information, rendering asset 
returns unpredictable. The price of an asset determined in an 
efficient market should follow a martingale process in which 
each price change is unaffected by its predecessor and has no 
memory. If the return series exhibit long memory, they display 
significant autocorrelation between distant observations. 
Therefore, the series realizations are not independent over 
time and past returns can help predict futures returns, thus 
violating the market efficiency hypothesis (Assaf  and 
Cavalcante  [2]).  
    Since the specific appearance of the Hurst parameter, the 
properties of the fBm which is referred to as long memory or  
long range dependence (LRD)  is also studied in this paper. 

II. MATERIAL AND METHODS 

Fractional Brownian Motion 
Definition 1 

For H∈ (0,1), a Gaussian process 
⎭
⎬
⎫

⎩
⎨
⎧ ≥= 0, tBB H

t
H  

is a fractional Brownian motion (fBm) if it has    

                                                             Mean: 0)( =H
tBE  

                    Covariance: 

( ),
2
1),( 222 HHHH

s
H
t ststBBE −−+=  

for all t ,s ∈  R. 
Note that one may recover the standard Brownian motion by 
replacing H with 1/2. 
 

Theorem 1 

A fBm process 
⎭
⎬
⎫

⎩
⎨
⎧ ≥= 0, tBB H

t
H  has the following 

properties: 
1. if 0< H <1/2 then it has short-range dependence (SRD); 
2. if H = 1/2  then it has independent increments or is standard 
Brownian motion;  
3. if 1/2< H <1 then it has long-range dependence (LRD). 
Note that if fBm has LRD, then it has memory.     
 
 
 

Long-Range Dependence of Financial Time 
Series Data 

Chatchai  Pesee 

T 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:8, 2008 

518International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:2
, N

o:
8,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
24

28
.p

df



 

 

Definition 2  
Let  }:{ NtX t ∈  be a time-series which is weakly 

stationary. The auto correlation function (ACF) for a weakly 
stationary time series is given by       
                                         

),,cov()( ktt XXk +=ρ   ,...2,1,0 ±±=k  
 
and the spectral density function can be defined as      

                                       

( ) πλπρ
π

λ λ <<−= ∑
∞

−∞=

− ,)(
2
1

k

ikekf              (1)                                        

 
Definition 3  
A fBm is a Gaussian process (denoted HB ) which has 

stationary increments and spectral density of the form 
 

( ) 12 +
= H

C
f

λ
λ                                      (2) 

 
where 0>C , 10 << H , R∈λ  
Note that  )1,0(∈H  is the so-called Hurst index or Hurst 
parameter. 

Thus  (2)  is transformed to the linearly logarithm equation 
 
   ( ) ( ) CHf loglog12log ++−= λλ                 (3)                                           

 
The relationship between the Hurst parameter and a slope in 
(3) is 

     
2

1+
=

slopeH                                     (4)                                                        

Algorithm of fBm 
 
 Step 1 Simulate the data sets in the determined  
                             time. 
 Step 2 Sketch the log-normal curve from step 1. 
                  Step 3 Find the average of a slope value from the  
                             log-normal curve in the determined time. 

    Step 4 Calculate the Hurst parameter from     

2
1+

=
slopeH . 

                   Step 5 Classify a range of the Hurst parameter. 

Long-Range Dependence and Self-Similarity 
Long-range dependence (LRD) or long-memory has been 

investigated extensively in a variety of applied fields, 
especially in finance   (Baillie [3], Granger and Ding [9], 
Comte and Renault [5],[6], Willinger, Taqqu and Teverovsky 
[17], Heyde and Liu [12]).  Since the concept of long-range 
dependence is incompatible with the efficient market 

hypothesis, a key assumption in mathematical finance, it is 
still a controversial issue whether market models should 
include long-memory (Lo [14], Baillie [3], Willinger, Taqqu 
and Teverovsky [17]). 

Long-range dependence can also be found in the 
fractionally integrated autoregressive moving average 
(ARFIMA) process of financial time series.  Hosking [13] 
showed that the autocorrelation, (.)ρ , of an ARFIMA process 

satisfies  12)( −∝ dkkρ as ∞→k . Thus the memory 
property of a process depends on the value of d. When 

)5.0,0(∈d , the autocorrelations do not have a finite sum. 

When 0≤d , the autocorrelations have a finite sum; that is 
ARFIMA processes with )5.0,0(∈d  display long memory. 
Hence the existence of long memory can be determined by 
testing for the statistical significance of the sample 
differencing parameter d (Cheung [4]).  

A second-order stationary process )(tξ  with discrete time 
is said to possess long-range dependence if its covariance 
function  +Ζ∈+= ssttsR )),(),(cov()( ξξ  decays at a 
hyperbolic rate as ∞→s .  In particular, the covariance 
function R(s) of a process with LRD can be approximated as 

                  

∞→<− sdKssR d ,
2
1,~)( 12                 (5)                   

 
for some constant K>0, or 
 

                  
∞→ssKssR ),cos(~)( κ                (6)                   

where K>0, [ ] 1,,0cos,
2
1 1 ≤∈=< − φπφκd  

The covariance function (5) decays slowly at a hyperbolic 
rate, while the covariance function (6) resembles a 
hyperbolically damped cosine wave. 

The simplest model of a stationary process with LRD and 
covariance function (5) was first proposed by Granger and 
Joyeux [10] and Hosking [13].  This process can be defined 
by the difference equation 

              
2
1,),()()1( <∈=− dZtttB d εξ             (7)                  

where )(tε  is white noise with 

0)(,0)( 22 >== σεε tEtE . The covariance function of 
this process can be approximated by (5) and the spectral 
density has the form: 

                

),[,
2

sin2
2

)exp(1
2

)(
22

2
2

ππλλ
π

σλ
π

σλ −∈⎟
⎠
⎞

⎜
⎝
⎛=−−=

−
−

d
d

d if

                                                                                           (8) 
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In continuous time, a fundamental process which may 
exhibit long-memory is fractional Brownian motion. For this 
reason, models with long-range dependence are often 
formulated in terms of self-similar process. Fractional 
Brownian motion is a typical example of self-similar process 
whose increments exhibit long-range dependence. For any H 
in (0,1) fractional Brownian motion (fBm) with Hurst index H 

is a centered Gaussian process 
⎭
⎬
⎫

⎩
⎨
⎧ ≥= 0, tBB H

t
H  with 

covariance 

( ),
2

),( 222 HHHHH
t

H
s sttsVBBE −−+=  

where  HV  is a normalizing constant given by 

                
)21(

)cos()22(
HH

HHVH −
−Γ

=
π

π
 

(Mandelbrot and Ness [15]).  It is a process starting from 
zero with stationary increments, 

,)( 22 H
H

H
s

H
t stVBBE −=−  and is self-similar, that is, 

H
tBα   has the same distribution as  H

t
H Bα  (Decreusefond 

and Ustunel [8],  Alos, Mazet and Nualart[1]). The constant H 
determines the sign of the covariance of the future and past 

increments. This covariance is positive when 
2
1

>H  and 

negative when  
2
1

<H . The case 
2
1

=H  corresponds to 

the ordinary Brownian motion. Furthermore, as the covariance 
between increments at a distance u decreases to zero as  

22 −HU , fBm  exhibits long-range dependence when 

2
1

>H .     

III. RESULTS 
The  daily changes of  the French Franc(FRF) against the 

US-Dollar (USD)  from 2 January 1975 to 15 January 
1999(N=5529),  the Deutsch Mark(DM) against the US-
Dollar from 4 January 1971 to 30 April 1996(N=6350), the 
JPY/USD from  4 January 1971 to 18 June 2007 (N=9131) 
and the Euro(EUR) against the US-Dollar from 4 January 
1999 to 18 June 2007(N=2124) are studied for long-range 
dependence.  Fig. 1 shows the daily changes of the FRF/USD, 
Fig. 2 shows the daily changes of the DM/USD, Fig. 3 shows 
the daily changes of   the JPY/USD from 4 January 1971 to 18 
June 2007 (N=9131) and Fig. 4 shows the daily changes of the 
EUR/USD from 4 January 1999 to 18 June 2007(N=2124), 
respectively. As can be seen in Fig. 5, the slope of the spectral 
density of FRF/USD is equal to -2.8567, the slope of the 
spectral density of the DM/USD in Fig. 6 is equal to -2.3433, 
the slope of the spectral density of the JPY/USD in Fig. 7 is 
equal to -2.1359 and the slope of the spectral density of the 
EUR/USD in Fig. 8 is equal to -2.1082,  respectively. 

IV. DISCUSSION 
As can be seen in Fig. 5, the slope of the spectral density of 

the FRF/USD is equal to -2.8567. Since it is equal to –(2H+1) 
in  (3), then the Hurst index (H) is equal to 0.9284. Since the 
slope of the spectral density of the DM/USD in Fig. 6 is equal 
to -2.3433, then the Hurst index (H) is equal to 0.6716. 
Similarly, the slope of the spectral density of the JPY/USD in 
Fig. 7 and the EUR/USD in Fig. 8 are equal to -2.1359 and -
2.1082. Thus the Hurst index (H) of the JPY/USD and the 
Euro/USD are equal to 0.5680 and 0.5541, respectively.  It 
might be a standard Brownian motion rather than a long-range 
dependence(LRD) for the JPY/USD and the EUR/USD 
because the Hurst indices(H)  approach to 0.5. But the Hurst 
indices(H)  of the FRF/USD and the DM/USD approach to 1 
rather than 0.5. Therefore, the FRF/USD and the DM/USD 
have memory due to H>1/2.  While Cheung [4], taking 
monthly data from January 1974 through December 1989, 
found some evidence for long memory in the French 
Franc/US Dollar and some marginal evidence for the UK 
Pound/US Dollar, but no apparent departure from martingale 
behavior for the German Mark, Swiss Franc, or Japanese Yen. 

V. CONCLUSION 
     Since the Hurst indices (H) of the JPY/USD and the 
EUR/USD approaches to 0.5, there are no memory for these 
cases. But it is assumed that the JPY/USD and the EUR/USD 
might be the Standard Brownian motion rather than the long-
range dependence (LRD). It is a clear evidence that there 
exists memory for the FRF/USD and the DM/USD because 
the Hurst indices (H) of the FRF/USD and the DM/USD 
approach to 1 rather than 0.5. If 1/2< H <1 then it has long-
range dependence (LRD) in the property of the fractional 
Brownian motion (fBm). Therefore, our results indicate that 
there exists long-range dependence (LRD) for these cases. If it 
has LRD, then it has memory which predictable in Time 
Series method for the next step. Finally, the principle of fBm 
is aimed to use in several financial time series data in our 
future work. 
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Fig. 1 The daily changes of the FRF/USD from 2 January 1975 to 15 
January 1999(N=5529) 
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Fig. 2 The daily changes of the DM/USD from 4 January 1971 to 30 
April 1996(N=6350)                                                           

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
50

100

150

200

250

300

350

400

(4 Jan 71)                                                  Day                                                 

JP
Y
 p

er
 1

 U
S
D

 
 

Fig. 3 The daily changes of JPY/USD from 4 January 1971 to 18 
June 2007 (N=9131) 
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Fig. 4 The daily changes of the EUR/USD from 4 January 1999 to 18 
June 2007(N=2124) 
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Fig. 5 The slope of the spectral density of the FRF/USD 
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Fig. 6 The slope of the spectral density of the DM/USD 
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Fig. 7 The slope of the spectral density of the JPY/USD 
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Fig. 8 The slope of the spectral density of the EUR/USD 
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