Search results for: performance metrics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5947

Search results for: performance metrics.

1867 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.

Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
1866 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
1865 Development of a New Piezoelectrically Actuated Micropump for Liquid and Gas

Authors: Chiang-Ho Cheng, An-Shik Yang, Chih-Jer Lin, Chun-Ying Lee

Abstract:

This paper aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micropump having the advantages of miniature size, light weight and low power consumption. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump, the displacement of the piezoelectric actuator and the deformation of the check valve, simultaneously. The micropump with check valve 0.4 mm in thickness obtained higher output performance under the sinusoidal waveform of 120 Vpp. The micropump achieved the maximum pumping rates of 42.2 ml/min and back pressure of 14.0 kPa at the corresponding frequency of 28 and 20 Hz. The presented micropump is able to pump gases with a pumping rate of 196 ml/min at operating frequencies of 280 Hz under the sinusoidal waveform of 120 Vpp.

Keywords: Actuator, Check-valve, Micropump, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
1864 The Competitive Newsvendor Game with Overestimated Demand

Authors: Chengli Liu, C. K. M. Lee

Abstract:

The tradition competitive newsvendor game assumes decision makers are rational. However, there are behavioral biases when people make decisions, such as loss aversion, mental accounting and overconfidence. Overestimation of a subject’s own performance is one type of overconfidence. The objective of this research is to analyze the impact of the overestimated demand in the newsvendor competitive game with two players. This study builds a competitive newsvendor game model where newsvendors have private information of their demands, which is overestimated. At the same time, demands of each newsvendor forecasted by a third party institution are available. This research shows that the overestimation leads to demand steal effect, which reduces the competitor’s order quantity. However, the overall supply of the product increases due to overestimation. This study illustrates the boundary condition for the overestimated newsvendor to have the equilibrium order drop due to the demand steal effect from the other newsvendor. A newsvendor who has higher critical fractile will see its equilibrium order decrease with the drop of estimation level from the other newsvendor.

Keywords: Bias, competitive newsvendor, Nash equilibrium, overestimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1863 Computational Study of Improving the Efficiency of Photovoltaic Panels in the UAE

Authors: Ben Richard Hughes, Ng Ping Sze Cherisa, Osman Beg

Abstract:

Various solar energy technologies exist and they have different application techniques in the generation of electrical power. The widespread use of photovoltaic (PV) modules in such technologies has been limited by relatively high costs and low efficiencies. The efficiency of PV panels decreases as the operating temperatures increase. This is due to the affect of solar intensity and ambient temperature. In this work, Computational Fluid Dynamics (CFD) was used to model the heat transfer from a standard PV panel and thus determine the rate of dissipation of heat. To accurately model the specific climatic conditions of the United Arab Emirates (UAE), a case study of a new build green building in Dubai was used. A finned heat pipe arrangement is proposed and analyzed to determine the improved heat dissipation and thus improved performance efficiency of the PV panel. A prototype of the arrangement is built for experimental testing to validate the CFD modeling and proof of concept.

Keywords: Computational Fluid Dynamics, Improving Efficiency, Photovoltaic (PV) Panels, Heat-pipe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3497
1862 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels along the Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future  storms and hurricanes on coastal communities. Accurate sea level  change prediction and supplement is an important task in determining  constructions and human activities in coastal and oceanic areas. In  this study, support vector machines (SVM) is proposed to predict  daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal  parameter values of kernel function are determined using a genetic  algorithm. The SVM results are compared with the field data and  with back propagation (BP). Among the models, the SVM is superior  to BPNN and has better generalization performance.

 

Keywords: Tides, Prediction, Support Vector Machines, Genetic Algorithm, Back-Propagation Neural Network, Risk, Hazards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
1861 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction

Authors: Enas M. F. El Houby, Marwa S. Hassan

Abstract:

Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.

Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
1860 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: Wind power, Uncertainty, Stochastic process, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3935
1859 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints

Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic

Abstract:

A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.

Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
1858 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach

Authors: Kriangkrai Maneerat, Chutima Prommak

Abstract:

Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN).We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.

Keywords: Floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3207
1857 A Blind SLM Scheme for Reduction of PAPR in OFDM Systems

Authors: K. Kasiri, M. J. Dehghani

Abstract:

In this paper we propose a blind algorithm for peakto- average power ratio (PAPR) reduction in OFDM systems, based on selected mapping (SLM) algorithm as a distortionless method. The main drawback of the conventional SLM technique is the need for transmission of several side information bits, for each data block, which results in loss in data rate transmission. In the proposed method some special number of carriers in the OFDM frame is reserved to be rotated with one of the possible phases according to the number of phase sequence blocks in SLM algorithm. Reserving some limited number of carriers wont effect the reduction in PAPR of OFDM signal. Simulation results show using ML criteria at the receiver will lead to the same system-performance as the conventional SLM algorithm, while there is no need to send any side information to the receiver.

Keywords: Orthogonal Frequency Division Multiplexing(OFDM), Peak-to-Average Power Ratio (PAPR), Selected Mapping(SLM), Blind SLM (BSLM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
1856 A New Approach to Workforce Planning

Authors: M. Othman, N. Bhuiyan, G. J. Gouw

Abstract:

In today-s global and competitive market, manufacturing companies are working hard towards improving their production system performance. Most companies develop production systems that can help in cost reduction. Manufacturing systems consist of different elements including production methods, machines, processes, control and information systems. Human issues are an important part of manufacturing systems, yet most companies do not pay sufficient attention to them. In this paper, a workforce planning (WP) model is presented. A non-linear programming model is developed in order to minimize the hiring, firing, training and overtime costs. The purpose is to determine the number of workers for each worker type, the number of workers trained, and the number of overtime hours. Moreover, a decision support system (DSS) based on the proposed model is introduced using the Excel-Lingo software interfacing feature. This model will help to improve the interaction between the workers, managers and the technical systems in manufacturing.

Keywords: Decision Support System, Human Factors, Manufacturing System, Workforce Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
1855 Renewable Energy Supply Options in Kuwait

Authors: Osamah A. Alsayegh, Fatma A. Fairouz

Abstract:

This paper compares planning results of the electricity and water generation inventory up to year 2030 in the State of Kuwait. Currently, the generation inventory consists of oil and gas fired technologies only. The planning study considers two main cases. The first case, Reference case, examines a generation inventory based on oil and gas fired generation technologies only. The second case examines the inclusion of renewables as part of the generation inventory under two scenarios. In the first scenario, Ref-RE, renewable build-out is based on optimum economic performance of overall generation system. Result shows that the optimum installed renewable capacity with electric energy generation of 11% . In the second scenario, Ref-RE20, the renewable capacity build-out is forced to provide 20% of electric energy by 2030. The respective energy systems costs of Reference, Ref-RE and Ref-RE20 case scenarios reach US dollar 24, 10 and 14 billion annually in 2030.

Keywords: Generation inventory, solar, planning, TIMES, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
1854 Grocery Customer Behavior Analysis using RFID-based Shopping Paths Data

Authors: In-Chul Jung, Young S. Kwon

Abstract:

Knowing about the customer behavior in a grocery has been a long-standing issue in the retailing industry. The advent of RFID has made it easier to collect moving data for an individual shopper's behavior. Most of the previous studies used the traditional statistical clustering technique to find the major characteristics of customer behavior, especially shopping path. However, in using the clustering technique, due to various spatial constraints in the store, standard clustering methods are not feasible because moving data such as the shopping path should be adjusted in advance of the analysis, which is time-consuming and causes data distortion. To alleviate this problem, we propose a new approach to spatial pattern clustering based on the longest common subsequence. Experimental results using real data obtained from a grocery confirm the good performance of the proposed method in finding the hot spot, dead spot and major path patterns of customer movements.

Keywords: customer path, shopping behavior, exploratoryanalysis, LCS, RFID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
1853 Experimental Studies on the Combustion and Emission Characteristics of a Diesel Engine Fuelled with Used Cooking Oil Methyl Esterand its Diesel Blends

Authors: G Lakshmi Narayana Rao, S Sampath, K Rajagopal

Abstract:

Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analysed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution.

Keywords: Combustion characteristics, diesel engine, emission characteristics, used cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3782
1852 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V·s at 250°C.

Keywords: Single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor (TFT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
1851 The Impact of an Air-Supply Guide Vane on the Indoor Air Distribution

Authors: C.-C. Tsao, S.-W. Nien, W.-H. Chen , Y.-C. Shih

Abstract:

Indoor air distribution has great impact on people-s thermal sensation. Therefore, how to remove the indoor excess heat becomes an important issue to create a thermally comfortable indoor environment. To expel the extra indoor heat effectively, this paper used a dynamic CFD approach to study the effect of an air-supply guide vane swinging periodically on the indoor air distribution within a model room. The numerical results revealed that the indoor heat transfer performance caused by the swing guide vane had close relation with the number of vortices developing under the inlet cold jet. At larger swing amplitude, two smaller vortices continued to shed outward under the cold jet and remove the indoor heat load more effectively. As a result, it can be found that the average Nusselt number on the floor increased with the increase of the swing amplitude of the guide vane.

Keywords: Computational Fluid Dynamics (CFD), dynamic mesh, heat transfer, indoor air distribution, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1850 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: Sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1849 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
1848 Optical Road Monitoring of the Future Smart Roads – Preliminary Results

Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz

Abstract:

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

Keywords: Smart roads, traffic monitoring, traffic scenedetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
1847 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
1846 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: Authentication, iris recognition, Adaboost, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1845 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1844 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
1843 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Han Xiao, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1842 SWARM: A Meta-Scheduler to Minimize Job Queuing Times on Computational Grids

Authors: Jean-Alain Grunchec, Jules Hernández-Sánchez, Sara Knott

Abstract:

Some meta-schedulers query the information system of individual supercomputers in order to submit jobs to the least busy supercomputer on a computational Grid. However, this information can become outdated by the time a job starts due to changes in scheduling priorities. The MSR scheme is based on Multiple Simultaneous Requests and can take advantage of opportunities resulting from these priorities changes. This paper presents the SWARM meta-scheduler, which can speed up the execution of large sets of tasks by minimizing the job queuing time through the submission of multiple requests. Performance tests have shown that this new meta-scheduler is faster than an implementation of the MSR scheme and the gLite meta-scheduler. SWARM has been used through the GridQTL project beta-testing portal during the past year. Statistics are provided for this usage and demonstrate its capacity to achieve reliably a substantial reduction of the execution time in production conditions.

Keywords: Grid computing, multiple simultaneous requests, fault tolerance, GridQTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
1841 Re-Optimization MVPP Using Common Subexpression for Materialized View Selection

Authors: Boontita Suchyukorn, Raweewan Auepanwiriyakul

Abstract:

A Data Warehouses is a repository of information integrated from source data. Information stored in data warehouse is the form of materialized in order to provide the better performance for answering the queries. Deciding which appropriated views to be materialized is one of important problem. In order to achieve this requirement, the constructing search space close to optimal is a necessary task. It will provide effective result for selecting view to be materialized. In this paper we have proposed an approach to reoptimize Multiple View Processing Plan (MVPP) by using global common subexpressions. The merged queries which have query processing cost not close to optimal would be rewritten. The experiment shows that our approach can help to improve the total query processing cost of MVPP and sum of query processing cost and materialized view maintenance cost is reduced as well after views are selected to be materialized.

Keywords: Data Warehouse, materialized views, query rewriting, common subexpressions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1840 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation

Authors: J.Dinesh Peter

Abstract:

This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.

Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1839 Methods for Case Maintenance in Case-Based Reasoning

Authors: A. Lawanna, J. Daengdej

Abstract:

Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.

Keywords: Case-Based Reasoning, Case Base Maintenance, Coverage, Reachability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1838 Collaborative and Content-based Recommender System for Social Bookmarking Website

Authors: Cheng-Lung Huang, Cheng-Wei Lin

Abstract:

This study proposes a new recommender system based on the collaborative folksonomy. The purpose of the proposed system is to recommend Internet resources (such as books, articles, documents, pictures, audio and video) to users. The proposed method includes four steps: creating the user profile based on the tags, grouping the similar users into clusters using an agglomerative hierarchical clustering, finding similar resources based on the user-s past collections by using content-based filtering, and recommending similar items to the target user. This study examines the system-s performance for the dataset collected from “del.icio.us," which is a famous social bookmarking website. Experimental results show that the proposed tag-based collaborative and content-based filtering hybridized recommender system is promising and effectiveness in the folksonomy-based bookmarking website.

Keywords: Collaborative recommendation, Folksonomy, Social tagging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252