

Abstract—Some meta-schedulers query the information system

of individual supercomputers in order to submit jobs to the least busy
supercomputer on a computational Grid. However, this information
can become outdated by the time a job starts due to changes in
scheduling priorities. The MSR scheme is based on Multiple
Simultaneous Requests and can take advantage of opportunities
resulting from these priorities changes. This paper presents the
SWARM meta-scheduler, which can speed up the execution of large
sets of tasks by minimizing the job queuing time through the
submission of multiple requests. Performance tests have shown that
this new meta-scheduler is faster than an implementation of the MSR
scheme and the gLite meta-scheduler. SWARM has been used
through the GridQTL project beta-testing portal during the past year.
Statistics are provided for this usage and demonstrate its capacity to
achieve reliably a substantial reduction of the execution time in
production conditions.

Keywords—Grid Computing, Multiple Simultaneous Requests,
Fault tolerance, GridQTL.

I. INTRODUCTION
N recent years, the Grid has emerged as one of the most
prominent solutions in supercomputing. Computational

Grids enable the coordination of large computational
resources in a geographically distributed environment across
multiple administrative domains [1]. Setting up a Grid of High
Performance Clusters (HPCs) scattered across several
organizations requires sets of software tools called
middleware such as the Globus Toolkit (GT) [2]. In order to
submit jobs to Grid resources with the Globus Toolkit, users
need to set up a certificate on the file system of the submitting
machine and must authenticate through the Grid Security
Infrastructure (GSI). When several people belong to the same
research group, it may be convenient to set up a web portal
which allows users to access a certain type of application. For
security reasons, a single certificate is then used and can only
be accessed by the administrator of the web server.

J.-A. Grunchec is with the Institute of Evolutionary Biological Sciences,

School of Biological Sciences, University of Edinburgh, EH9 3JR UK. Phone
number: +44 (0)131-650-5442; fax number: +44 (0)131-650-6556; e-mail:
jgrunche@staffmail.ed.ac.uk.

J. Hernández-Sánchez is with the Institute of Evolutionary Biological
Sciences, School of Biological Sciences, University of Edinburgh, EH9 3JR
UK Phone number: +44 0131-650-5442; e-mail: jules.hernandez@ed.ac.uk).

S. Knott is with the Institute of Evolutionary Biological Sciences, School
of Biological Sciences, University of Edinburgh, EH9 3JR UK. Phone
number: +44 0131-650-5444; e-mail: s.knott@ed.ac.uk .

A GridSphere [3] portal was created for the GridQTL
project [4] to provide tools for geneticists to perform
Quantitative Trait Loci (QTL) mapping analyses [5] on the
Grid. QTL are chromosomal regions affecting trait variation,
and therefore likely to harbor genes of interest. Most GridQTL
computations can be distributed on the Grid as Parameter
Sweep Applications (PSA) i.e. computations that can be
divided into independent tasks identified by a unique
combination of parameters. Typically, a region of interest (e.g.
part of a chromosome or the whole genome) is tested at
regular intervals for the presence of QTL. A new GridQTL
tool is the Linkage-Disequilibrium and Linkage Analysis
(LDLA) module. It deals with complex populations, with the
additional advantage that it incorporates information from
pedigree and history simultaneously. LDLA has been used
mainly to refine QTL location [6], implying analyzing over 10
to 200 positions in the region of interest. Each position can be
analyzed independently by a single task. LDLA uses
likelihood optimization software in order to calculate the
variance of QTL and the duration of the calculation depends
on the number of steps to reach convergence.

Tasks within one LDLA share input data. Therefore, the
input dataset can be co-located i.e. it can be shared by all
individual tasks. It is expected to be less than a few
megabytes. GridQTL uses the NGS [7] as the main
computational tool. GridQTL computations can also be sent to
a local HPC, the ECDF [8] and a small local pool of
workstations managed through the Condor middleware [9].
The computing elements of this Grid can be considered as
quite homogenous since the slowest computing unit on the
Condor pool can be roughly assessed as half the speed of the
fastest element in the ECDF. The duration of the scheduled
tasks depends on the type of data, the type of analysis and the
number of steps necessary for the convergence of the
likelihood calculation. Any assessment of the expected
duration of each task is therefore expected to be quite
inaccurate. The aim is to minimize the jobs makespan i.e. the
time between sending the first input files to a computational
server and receiving the last output. Since file transfer
durations are considered negligible for LDL analyses when
compared with the queuing and execution times and since the
execution duration forecasts are expected to be inaccurate, our
optimization effort has chiefly consisted in trying to minimize
the time spent by these tasks in the queuing system of the
Grid. This led us to develop a meta-scheduler called SWARM
(Scheduling With A Request Multiplication) which

SWARM: A meta-scheduler to Minimize Job
Queuing Times on Computational Grids

Jean-Alain Grunchec, Jules Hernández-Sánchez, and Sara Knott

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1831International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

substantially speeds up PSAs by minimizing the queuing time
on the Grid, and provides facilities required in a production
environment such as failure handling and dynamic activity
reports through a web interface.

 Section 2 describes the details of the SWARM system
architecture. In Section 3, the performance of the scheduler is
evaluated. Section 4 presents some related schedulers,
summarizes the findings and presents possible extensions.

II. METHODS AND MATERIALS

A. The Multiple Simultaneous Request (MSR) algorithm
A task is defined as the calculation, e.g. computing a

likelihood, and a job can be described as the means to perform
the task on the Grid. When a task needs to be executed, it
would intuitively make sense to schedule a job on the fastest
cluster on the Grid with available nodes. However, querying
the clusters on a Grid can take a few seconds due to the
execution duration of the calls and the latency of the
communications. By the time a meta-scheduler can access the
information about the CPU availability for each cluster
belonging to the Grid, this information may already have
become inaccurate due to new scheduling events happening
elsewhere in the meantime. This problem is compounded by
the fact that a Grid includes many clusters and faults in the
information system of any cluster should be expected at any
time. When no cluster has any free node available, it is still
possible to check that some clusters have queued jobs with
fewer computational requirement than others by querying the
workload management system of each cluster by means of
middleware commands. Nevertheless, if a high priority user
submits a job B after job A has been submitted, job A may
have to wait in the queue until job B has started.
Consequently, since the information available at the time of
submission about the status of a particular cluster may change,
it may be better to submit a job to several clusters in order to
increase the chance of a short queuing duration for a particular
task.

The Multiple Simultaneous Requests (MSR) job algorithm
has been designed to improve the performance when the
priorities scheduled in supercomputers change [10]. In the
original description, for each task which needs to be
processed, a job is submitted on the k least loaded clusters.
The first of these k jobs to start will carry out the task while
the others will be cancelled, hence the MSR minimizes the
queuing duration across these k clusters. Each job runs a call
to the central meta-scheduler and checks if the task has started
elsewhere. The operation is supposed to be atomic. However,
the cancellation calls may be processed after some of these (k-
1) replicates (from now on referred to as “redundant
replicates”) have started, and this can waste some CPU time.
On a Grid composed of a few large clusters, k can be chosen
as the number of clusters so that this step is not required.

The grey boxes correspond to the time of the start of a particular task on a

particular cluster. The white boxes correspond to the time of the cancellation
of the redundant jobs associated with a particular task. The times are given
with hypothetical values in seconds since the submission of the first job of the
analysis i. e. the queuing times.

Fig. 1 Time of the start and cancellation calls of jobs associated
with a 5 tasks analysis on a 4 HPC Grid with the MSR algorithm

The grey boxes correspond to the time of the start of a particular task on a
particular cluster. The white boxes correspond to the time of the cancellation
of the redundant jobs associated with a particular task. The times are given
with hypothetical values in seconds since the submission of the first job of the
analysis i. e. the queuing times.

Fig. 2 Time of the start and cancellation calls of jobs associated
with a 5 tasks analysis on a 4 HPC Grid with the SWARM algorithm.

The MSR method has substantial theoretical advantages

over more conventional methods since it is expected to deal
more robustly with information system failures through the
use of multiple requests. The original paper [10] presented test

HPC 1

8 s 7 s 6 s 7 s

7 s 6 s 5 s 4 s

4 s 5 s 4 s 3 s

1.1 s
Task 5

0.1 s
Task 1

1 s
Task 2

1 s
Task 4

1 s
Task 3

Queues

HPC 2 HPC 3 HPC 4

2 s2 s 2 s

Job 5

Job 4

Job 3

Job 2

Job 1

8 s 7 s 6 s 7 s

7 s 6 s 5 s 4 s

4 s 5 s 4 s 3 s

1.1 s 2 s 2 s 2 s

0.1 s 1 s 1 s 1 s

Queues

HPC 1 HPC 2 HPC 3 HPC 4

Task 5

Task 4

Task 3

Task 2

Task 1

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1832International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

results of the MSR scheme on the simulation of the activity of
a 5000 contiguous jobs subset from the Cornell Theory
Center. However, no implementation has been developed and
released to work in a real grid environment. Hence, the MSR
scheme did not take into account issues which happen in real
production environments, such as network or node failures.

B. The SWARM algorithm
In a PSA context where n tasks need to be carried out, it

would be possible to submit n MSR analyses and bundle the
results at the end. That would typically mean kn × jobs if k
is the number of clusters used on the Grid by the MSR.
Unfortunately, it is likely that many of the redundant
replicates of the first tasks will run and be cancelled before the
later tasks have started. For instance, Fig. 1 describes the
theoretical case of 5 tasks scheduled with the MSR algorithm
on a Grid made of four clusters. Each task is expected to run
for less than a second, i.e. a duration that is smaller than
durations observed in reality between the scheduling
decisions. In this example, 10 redundant jobs ran somewhere
on the Grid before the last job corresponding to Task 5 started
6 seconds after the jobs submission on HPC 3. The SWARM
algorithm attempts to increase the overall speed by allowing
redundant replicates of the first task to act as potential
replicates of the later tasks (Fig. 2). Therefore no redundant
replicates can happen before the last task has started. In the
MSR, the replicates try to check if a job has started elsewhere
for their respective task, whereas in the SWARM scheduler,
the tasks send call-backs to the server to check the first index
of the task which has not yet been processed.

C. Implementation
Next, the relation between the tasks executed on the Grid is

described. Java Servlets [11] can communicate with remote
clients provided the firewall on these remote clients allows
outbound HTTP calls. Most NGS HPCs allow either the nodes
to communicate with machines beyond the firewall through
HTTP or indirectly via the head node. Consequently, a servlet
has therefore been chosen as the corner stone of the SWARM
meta-scheduler.

The analysis starts when a web client calls the SWARM
servlet and passes the information specifying the type of
analysis and the parameters needed by the analysis. The input
files that are common to all tasks are then uploaded on the
head node of each Globus cluster. A Submit Description File
is generated for each Condor pool so that the transfer of the
common input files is done after the job submission. n jobs are
then submitted to each cluster. For each of these jobs, a
maximal job duration is calculated.

Once the jobs are submitted, they will enter the queue on
each cluster. When they start, they contact the SWARM
servlet and wait for the servlet to send back the index i of the
next task due to start. Input files that are required by a specific
task only are then sent through GridFTP to the Globus
resources. If this task runs on a Condor resource, the specific
input file can also be downloaded from the web server.

When a task has been successfully executed, the associated
job contacts the SWARM servlet, which then retrieves the
results from the Globus resources. The result files are then
parsed. If they do not correspond to an expected format, it can
be assumed that there was some kind of failure during the job
execution (either a corruption of data or problems with the
node executing the job). This type of failure is considered as
an output failure. If the job has failed, the job is deleted from
the memory, and therefore its task index can be allocated to
another job that will start later. In case of output failure, new
jobs are submitted to all clusters in order to ensure that a
failed job can be restarted up to three times per task. If the job
is considered as successful, then the completing process
checks the number of other jobs having successfully
completed. If all scheduled tasks have completed successfully,
each cluster needs to cancel the redundant jobs.

SWARM has been developed to deliver a service to a
community of users running hundreds of analyses and
thousands of tasks per day. Consequently, it must handle
different types of failure. When the execution duration of a
job on the Grid exceeds its expected maximal duration, the job
is likely to be terminated by the cluster before the job ends
successfully. In this case, a watchdog thread cancels the job
and schedules it again with an expected maximal duration
multiplied by three. This will be done for up to three duration
failures per job. Jobs can also fail on the Grid due to hardware
failures. In this case, the jobs do not report their results back
to the SWARM servlet, and are then considered to have
terminated due to a silent failure. In order to deal with
computing node crashes, the watchdog thread checks that
tasks allegedly active according to the servlet records are
indeed active through Globus and Condor status checking
commands. If the job is inactive and result files are missing,
new jobs are submitted in the same way as in the case of
output failures. In the case of a complete shutdown of a large
part of the network around the server during the analysis
submission, many job submissions may fail, since the clusters
can not be contacted. If the watchdog thread notices that there
is no active job on the Grid for a long time, it will attempt to
submit new jobs on each active cluster.

As described above, several threads can be running on the
server while they try to check and alter the status of the jobs.
In order to guarantee thread safety, Java synchronized
statement are extensively used to protect the integrity of the
data. In order to increase performance, reports retrievals are
made without synchronization when an analysis is still
running.

D. Experimental Protocol
In order to assess the performance of SWARM, a set of

tests were run to compare the SWARM implementation, the
MSR implementation and a third party meta-scheduler, the
gLite Resource Broker (RB) [12]. gLite [13] is a middleware
that has been developed as part of the EGEE project [14].
EGEE provides access to 41,000 CPUs across 250 sites
worldwide.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1833International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

The tests consisted of mapping QTL in a simulated
population of 400 individuals. The same dataset was used for
each test. Every test consisted of running 50 LDL Analyses at
different positions simultaneously, so for each test 50 tasks
had to be executed on the Grid. Each task lasted for about 2
minutes and the total duration for each test is about two hours.
These durations actually depend on the HPCs used during the
computation. In terms of genetics, each analysis aimed to
locate a simulated gene within a short chromosomal region.
The chosen set-up resembles typical conditions that have been
encountered in real data analyses.

A series of simultaneous tests was run. Three sets of 15
tests were carried out: one set with SWARM, another one
with the MSR and a last one with gLite. For each subset, a
couple of tests were run each day, with a working day
considered as starting and finishing at 09:00 hrs. This allowed
us to test the schedulers at different times, in different load
conditions. For each test, the gLite RB, the MSR scheme and
the SWARM scheduler are started within a 5 s time interval in
this order. During these tests, the three schedulers are
expected to compete simultaneously to complete their tasks in
the shortest duration.

The resources used for each set of tests vary depending on
the availability of the resources for each scheduler and the
type of tests. The GridQTL project can access a set of NGS
resources, a local Condor pool and the ECDF located in
Edinburgh (Table I). These resources have different CPU
specifications. The seven computational resources are
available to both the SWARM and MSR schedulers. The gLite
RB has been deployed in pre-production in March 2007 on the
NGS. It runs on the NGS Oxford, Leeds, RAL and
Westminster HPCs. At the time of the experiments, the NGS
Manchester HPC could not be used by the gLite RB, and gLite
had yet to be set up on the ECDF. Consequently, the HPC
used for the tests are the four supercomputers that are
available to the gLite RB.

Before the test could be run, the LDLA had first to be
implemented with the different schedulers. The SWARM tests
were implemented as single SWARM analyses of the 50
positions. It is possible to narrow the SWARM algorithm so
that it runs the MSR scheme. The MSR tests have been
implemented as 50 SWARM analyses submitted and run in
parallel. Each MSR analysis is expected to handle a single
position. The steering algorithm works as follows: since all
the 50 analyses share their input data, it is transferred before
the job submission with the meta-scheduler. Then, the MSR
analyses submission starts through a set of calls to the meta-
scheduler. Once all MSR tasks have been submitted, the script
calls the meta-scheduler every 5 seconds and checks the status
of the 50 MSR analyses at once. When the 50 MSR analyses
have completed, the resulting output files are post-processed.
Then, the MSR test has terminated and the test duration and
statistics are recorded.

For the gLite tests, a feature of gLite allows a ranking to be
set between the machines to be selected for job submission.
The ranking method for site selection has been set so that sites

with the most available CPUs are chosen in priority if no job
is queuing there. If all sites have some queuing jobs, the site
selected is the site with the smallest number of jobs in the
queue. This ranking method is supposed to be better than only
using the number of free CPUs according to gLite
documentation since the number of free CPUs is advertised
per queue and not per virtual organization [15]. The gLite
implementation uses an algorithm similar to the MSR
implementation. First, the input files are sent simultaneously
to each of the sites. When all transfers have terminated, the
shell script submits 50 jobs with the gLite RB. When all
analyses have been submitted, a loop is started and the script
checks if a job has completed during every iteration. If a job
has completed, the results are downloaded and then the loop
moves on to the next iteration. If the current job has not yet
completed, the scripts sleeps for 5 s, and checks again whether
the job has completed, and so on until completion. Once the
computation has completed, the result file for each gLite job
are post-processed, and then duration statistics are recorded. It
is important to note that this implementation does not include
features for failures management such as restarting failed jobs.
Consequently, when a gLite test stopped because of a failure,
the entire test was discarded and a new one was started
instead.

III. RESULTS

A. Experimental performance measurements
Several measurements were recorded during these tests.

Table II provide results about the wall clock duration, the real
duration, the speed up ratio, the total duration of the redundant
replicates, the number of output failures, the queuing time and
the number of HPC used successfully during the computation.
As for all durations in these experiments, the time unit used is
the second. The real duration is the duration between the start
of the process calling the LDLA script and the termination of
the last output files retrieval from the compute nodes. The
wall clock duration is defined as the total sum of the durations
of the successful jobs running on the Grid. The speed up ratio

TABLE I
RESOURCES AVAILABLE TO THE SWARM SCHEDULER

Cluster NbCPU T100MF WMS Used during
the tests

ECDF 1536 0.67 SGE NO
NGS-2
Westminster

256

0.99

PBS YES

NGS-2 Oxford 256 1.03 PBS YES
NGS-2 Leeds 256 0.97 PBS YES
NGS-2 RAL 256 1.05 LSF YES
NGS-2
Manchester

256 1.08 PBS NO

Local Condor
Pool

6 Min : 0.64
Max : 0.65

Condor NO

NbCPU is the total number of cores of the compute nodes.
T100MF is the time taken by a CPU to run the 100 MFlops in a second

according to our benchmark, which is a C++ program.
WMS is the the Workload Management System available on the HPC

(SGE = Sun Grid Engine, PBS = Portable Batch Scheduler, LSF = Load
Sharing Facility).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1834International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

is calculated as the wall clock duration divided by the real
duration. The “queuing time” for a particular job is defined as
the duration between start of the process calling the LDLA
script for each of the scheduler and the start of the job on the
compute node. The queuing time includes the duration of the
transfer of the common input files to the head nodes of the
HPCs. The “redundant duration” is defined as the total sum of
the wall clock durations of the redundant replicates running on
the Grid. In the case of the MSR and SWARM experiments,
the number of output failures was recorded. There were also
silent failures but these were not recorded as they do not
require jobs to be restarted if they are not also output failures
i.e. when a job runs successfully but does not report back as
completed. Except in a few cases, the output failures were
temporary failures i.e. the results were obtained after the failed
jobs were re-submitted. The number of HPCs used during the
computation is the number of HPCs on which at least one job
ran, successfully completed and gave results back to the
cluster.

The simultaneous series of tests aimed to provide an
environment where the load conditions and computing nodes
were the same (Table II). For all tests except one, the speed up
ratio is higher for SWARM and the MSR than for the gLite
RB.

The MSR and SWARM scheduler are significantly faster
than the gLite resource broker for this set of analyses In the
case of the MSR scheme, the average real duration, the
average wall clock duration and the speed up ratio are
respectively 628.8 s, 8110 s and 15.8. SWARM is even faster
since the average real duration equals 524.6 s, the wall clock
duration is 8612 s and the speed up ratio equals 21.4. For 11
tests, SWARM is the fastest scheduler to complete the
computation, whereas the MSR is faster in 3 other cases. This
can be related to shorter queuing times for SWARM since the
average queuing time equals 276.9 s in the case of the MSR
whereas the average queuing time is 143.6 s for SWARM.
Similarly, the maximum queuing time 457.6 s for the MSR is
longer than the maximum queuing time 347.8 s for SWARM.
The average number of output failure for the MSR was 1.6
and 1.7 for SWARM. Since no resumption mechanism has
been implemented in gLite, output failures were not recorded
and in case of failures another test was performed.

B. SWARM as a production scheduler
SWARM has been used since March 2008 as part of the

pre-production LDLA beta-testing portlet [16]. This portlet
has been developed within the scope of the GridQTL [4]
project. GridQTL uses an open source portlet-based portal
framework known as GridSphere [3]. GridSphere portlets are
self-contained modular software components that provide
specific facilities within a general portal architecture. They
typically appear as pluggable windows on the web page, and
provide a flexible and intuitive interface to a web portal. Both
the GridSphere portlets and the SWARM meta-scheduler use
the Apache Tomcat web container [17]. It is therefore quite
straightforward to have the GridSphere portlets work

alongside SWARM. In order to provide usage transparency, a
technology called AJAX [18] allows dynamic calls from a
web page to a servlet running on a server. This method
combines Asynchronous JavaScript calls and XML HTTP
requests. A JavaScript timer can refresh the web page at a
given frequency and hence provides a dynamic interface.
XML HTTP requests to a web server allow the text provided
within an HTTP response to be used in a JavaScript function.

Previous sections presented tests involving a LDLA with 50
positions to be analyzed. Some of the users have run much
larger computations, and this has helped us to address some
weaknesses in the scheduler. For instance, some users ran
LDLA analysis on hundreds of positions. Intuitively, it would
be most efficient to send the final cancelling calls all together
in parallel in order to cancel many redundant replicates before
they start and therefore reduce the redundant duration.
However, it has been noticed that sending hundreds of
cancelling calls simultaneously had severe side effects on the
server’s performance, and could crash the Tomcat server.
Therefore thread pools are used to send a certain, limited
maximum number of simultaneous cancelling calls. For most
analyses run in the LDLA beta-testing phase, it happened
rarely that a single cluster processed more than 70 percent of
the tasks. Consequently, other improvements were
implemented to reduce the number of redundant replicates.
For instance, the configuration file allows a reduction in the
number of replicates on a particular cluster.

When the MSR scheme can access both NGS resources, the
Condor pool and the ECDF, some tests have shown that the
MSR scheme seems to often select the ECDF, the fastest HPC
according to Table I, and although this choice should lead to
smaller computing times, MSR was still slower than
SWARM. A simple feature has therefore been added to
SWARM for production use to favor the selection of faster
clusters if they are available: it is possible to set in the
configuration files a small delay before the submission of jobs
on particular clusters. This is to help faster clusters to be
selected when several HPCs of heterogeneous speed are
available. The slower the HPCs, the longer the duration of this
delay can be set.

A computational grid can be heterogeneous in terms of the
speed of the HPCs involved, but it is chiefly the heterogeneity
of the policies of use between virtual organizations that
differentiates Grid computing from distributed computing. In
particular, the NGS restricts its usage by providing a limited

TABLE II
PERFORMANCE MEASUREMENTS OF SWARM, MSR & GLITE

Queuing
Time (s)

Duration (s) Speed up
ratio

Type
Avg. Max. Real Wall

Clock
Redun-

dant

gLite 359 731 3475 9878 n.a. 5.6
MSR 257 458 629 8110 28 15.8
SWARM 144 348 525 8612 37 21.4

The values given correspond to the average values of the measurements
over the corresponding 15 tests, without taking into account the single
interrupted gLite test.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1835International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

CPU hours account whereas access to the ECDF and the
Condor pool is not restricted. In order to improve the level of
service provided to the users, the SWARM scheduler can
check a monthly CPU allowance provided to each user and
submit jobs on a set of resources depending on the previous
usage and therefore implement a fair share usage policy
among users.

Since its release, the use of SWARM through the LDLA
portlet has enabled bug identification and correction and the
testing of the capacity of SWARM to significantly speed up
much larger computations than those run in section 3.
Between March 2008 and April 2009, SWARM has allowed
57 external users to run 1934 analyses i.e. a total of 155684
independent tasks, which required 10118 hours of
computation. Table III displays the 15 largest computations
run in October and November 2008. They show the capacity
of SWARM to achieve large speed up ratios of up to 147 on
computations lasting for more than 28 hours.

Some datasets uploaded by the LDLA external users
required tens of gigabytes of RAM and tens of gigabytes of
temporary space storage on the HPC head nodes in order to be
analyzed. All clusters cannot provide this to all jobs. Some
features were added to SWARM so that entire HPC
computing nodes can be booked for particular jobs requiring a
lot of memory. When some analyses require a large amount of
temporary disk space, the supercomputers allow only a few
jobs to run on them depending on the size of their local
storage facilities and the disk size required by the job. This
may lead to situations where there are fewer jobs scheduled on
the Grid than tasks to be performed. In this case, the
resubmission mechanism of SWARM is then used to submit
new jobs when the previous ones have terminated and the
temporary space storage has been made available again. This
mechanism will be called until all tasks have been processed.

IV. DISCUSSION
Scheduling jobs effectively is one of the most crucial

problems in Grid computing. Some middleware try to provide
a solution by focusing on particular types of applications, e.g.
Nimrod/G [19] and AppLeS [20], whereas Condor [9] is
particularly good at handling a large number of jobs on a set
of resources in a distributed computing context and has been
extended to be also an all-around solution in Grid computing.

Nimrod/G's scheduling approach is based on deadlines and
on a Grid economy model [19][21]. Some input parameters
need to be provided. For instance, a resource owner has to set
the resource cost. The user has to specify the maximal price to
be paid and may provide a deadline before which an
application execution needs to have completed. The Nimrod/G
resource broker queries the Globus Monitoring and Discovery
System (MDS) and identifies available resources. Then, it
tries to distribute jobs so that the maximal usage cost, which
depends on the usage cost of each resource, and deadlines are
respected. During the execution, when cheaper or faster
available resources are discovered, jobs may be migrated

away from slow or expensive resources. Nimrod/G can
evaluate the job duration by using some execution rate
measurement. The Gridbus Resource broker provides an
extension to Nimrod/G to optimize PSAs with large datasets
[22]. Features were included in order to enable trading the
capacity to speed up a distributed calculation versus a possible
reduction of the economical cost of the calculation on a world
wide Grid [23]. A portal for high energy physics and
astrophysical computations was designed to steer the
calculations with the Gridbus broker on Grids [24]. Grid
activity progress reports can be generated at the user’s request
though there is no facility such as AJAX to automate reports
delivery. This portal has been designed so that it can be easily
extended to cope with different types of physics computations.

AppLeS [20] is another meta-scheduler that focuses on
PSAs and more particularly on co-location of data and
experiments and adaptive scheduling. Basically, AppLeS tries
to minimize dynamically the job makespan. AppLeS monitors
the state of the Grid by frequently calling scheduling events.
For each scheduling event, a heuristic is used in order to
provide the best scheduling plan and requires only the
estimation of the execution and transfer time. Both AppLeS
and Nimrod/G continuously re-evaluate and plan again their
schedule: they frequently use scheduling events during which
they query resources about their status, identify available
resources and then use their own heuristics to create a
scheduling plan with the available resources. The AppLeS
scheduler can also be used through a web portal. For instance,
AppLeS is used in the GridSpeed [25] project, which allows
non-specialists to develop application portals.

Condor [9] is a general purpose middleware for Grid and
distributed computing. Condor allows a cluster to be created
that collects the computing power of thousands of idle
workstations. A single job queue is created on the Condor
Central manager, and as soon as a resource becomes available,
the job with the highest priority can be scheduled on this
resource. This central manager keeps a record of the activity
of each resource, and is responsible for migrating jobs. A
mechanism of Condor called Condor-G allows jobs to be
submitted to Globus resources [26]. Another Condor

TABLE III
THE 15 LARGEST LDLA COMPUTATIONS RUN BY 6 EXTERNAL

USERS IN OCTOBER AND NOVEMBER 2008

Time and date of
the computation

Real duration
in minutes

Wall clock
duration in hours

Speed up
ratio

13/10 09:50 74.1 49.6 40.2
27/10 09:08 55.7 40.4 43.5
27/10 10:45 53.1 39.7 44.9
30/10 09:29 13.9 29.5 127.0
31/10 02:51 112.5 37.2 19.9
31/10 06:22 119.6 36.4 18.2
01/11 13:37 14.8 36.5 147.8
05/11 10:49 14.3 33.7 141.8
05/11 11:19 18.5 35.4 114.6
08/11 01:20 190.9 286.5 90.0
08/11 09:52 370.4 106.9 17.3
11/11 16:45 353.0 171.7 29.2
11/18 16:49 74.4 46.0 37.1
11/19 08:57 14.4 31.0 129.2
11/19 13:27 93.0 47.4 30.6

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1836International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

mechanism called GlideIn transforms Globus resources into
resources that can be accessed directly through the Condor
central manager. Therefore, the combined usage of Condor-G
and GlideIn allows aggregating the resources provided by
many Globus HPCs in order to create a large and centralized
cluster of resources coordinated by the Condor central
manager. A major hurdle in the use of GlideIn jobs is the
possibility that they may be prevented from contacting the
central manager by the firewall of these clusters. For instance,
GlideIn jobs communications were blocked by the firewall of
the NGS clusters.

SWARM meta-scheduler has been designed to minimize
the queuing time for PSA. It includes features necessary in a
real Grid production environment such as failures
management, dynamic and transparent reporting, and fair
share usage policies. In order to offer both a user-friendly
web-based environment and fast analyses, responsiveness has
been considered as paramount in the design of the scheduler to
be used in the GridQTL portal. The use of call-backs has
therefore been preferred to the use of scheduling events,
which power meta-schedulers such as AppLes and Nimrod/G.
SWARM can speed up analyzes by a large factor on a Grid
composed of HPCs belonging to the UK National Grid
Service and local resources. Unlike GlideIn, SWARM does
not need firewall settings to be adjusted as long as the HPCs
used in the calculation allow outbound HTTP or HTTPS
connections. Unlike AppLes, SWARM has not been designed
to handle efficiently the scheduling of PSA with large input or
output datasets. SWARM has not either been designed to take
into consideration the economical cost of the resources usage
on a world wide Grid as Nimrod/G does.

The SWARM meta-scheduler has been compared to an
implementation of the MSR scheme and the gLite Resource
Brokers. Comparisons show that the queuing time is lower for
SWARM than for the other schedulers. Consequently LDLA
analyses are completed significantly faster with SWARM than
with the other methods. SWARM has been deployed within
the LDLA beta-testing portal (GridQTL project), speeding up
significantly computationally intensive analyses.

 The SWARM source code will be distributed under the
GNU lesser general public license and can be obtained from
the authors or online on the GridQTL website [27].
Minimizing the queuing time has been shown to help speed up
the execution of a large number of jobs. When the job
duration is short, the queuing time is a critical factor. Some
extensions could be brought to SWARM for other types of
problems where the queuing duration can be long. For
instance, it could also be extended so that MPI programs
requiring a large number of CPUs may have to queue less
until the right number of CPUs is available by scheduling
them simultaneously on several clusters through a similar
method.

V. ACKNOWLEDGMENTS
This work has made use of the resources provided by the

Edinburgh Compute and Data Facility (ECDF).
(http://www.ecdf.ed.ac.uk). The ECDF is partially supported
by the eDIKT initiative (http://www.edikt.org). The authors
would like to acknowledge the use of the UK National Grid
Service in carrying out this work.

REFERENCES
[1] I. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing

Infrastructure,” 2nd ed., Ed. Los Altos: Morgan-Kaufman, 2004.
[2] I. Foster, “Globus toolkit version 4: software for service-oriented

systems,” in Proc. Conf. on Network and Parallel Computing, Beijing,
China, Nov.-Dec. 2005, pp. 2–13.

[3] J. Novotny, M. Russel and O. Wehren, “GridSphere: a portal framework
for building collaborations,” Concurrency and Computation: Practice
and Experience, vol. 16, no. 5, pp. 503–513, Mar. 2004.

[4] G. Seaton, J. Hernández-Sánchez, J.-A. Grunchec, I. White, J. Allen, D.-
J. De Koning, W. Wei, D. Berry, C. Haley and S. Knott, “GridQTL: A
Grid Portal for QTL Mapping of Compute Intensive Datasets,” in Proc.
8th World Congress on Genetics Applied to Livestock Production, Belo
Horizonte, Brazil, Aug. 2006.

[5] M. Lynch and J. Walsh, “Genetics and Analysis of Quantitative Traits,”
Sunderland, MA: Sinauer Associates, 1998.

[6] T. Meuwissen, A. Karlsen, S. Lien, I. Olsaker and M. Goddard, “Fine
mapping of a quantitative trait locus for twinning rate using combined
linkage and linkage disequilibrium mapping,” J. Genetics, vol. 161, no.
1, pp. 373–379, May 2002.

[7] The UK National Grid Service [Online]. Available: http://www.grid-
support.ac.uk

[8] The Edinburgh Compute and Data Facility [Online]. Available:
http://www.ecdf.ed.ac.uk/index.shtml

[9] The Condor Project [Online]. http://www.cs.wisc.edu/condor
[10] V. Subramani, R. Kettimuthu, S. Srinivasan and P. Sadayappan,

“Distributed job scheduling on computational grids using multiple
simultaneous requests,” in Proc. 11th IEEE Int. Symposium on High
Performance Distributed Computing, Edinburgh, UK, Jul. 2002, pp.
359–368.

[11] The Java Servlet Technology [Online]. Available:
http://java.sun.com/products/servlet/index.jsp

[12] The NGS gLite Resource Broker tutorial [Online]. Available:
http://wiki.ngs.ac.uk/index.php?title=Resource_Broker_Tutorial

[13] E. Laure, E. Fisher, S. Fisher, A. Frohner, C. Grandi and P. Kunszt,
“Programming the Grid with gLite,” Computational Methods in Science
and Technology, vol. 12, no. 1, pp. 33–45, 2006.

[14] G. Gagliardi, “The EGEE European Grid infrastructure project,” in Proc.
6th Int. Conf. High Performance Computing for Computational Science,
Valencia, Spain, Jun. 2004, pp. 194–203.

[15] Job sumission into the LHC Grid (Job Management + JDL) [Online].
Available:
http://www.egee.hu/grid06/download/day_1/05_EGEE_job_execution_a
nd_JDL.ppt

[16] The LDLA beta testing portal [Online]. Available:
http://cleopatra.cap.ed.ac.uk/gridsphere/gridsphere

[17] Apache Tomcat [Online]. Available: http://tomcat.apache.org
[18] J. Garret, “Ajax: A new approach to web applications”, Adaptive path,

2005 [Online]. Available:
http://www.adaptivepath.com/publications/essays/archives/000385.php

[19] R. Buyya, D. Abramson and J. Giddy, “Nimrod/G: An architecture for a
resource management and scheduling system in a global computational
Grid,” in Proc. 4th Int. Conf. on High Performance Computing in Asia-
Pacific Region, Beijing, China, May 2000, pp. 283–289.

[20] F. Casanova, G. Obertelli, F. Berman and R. Wolski, “The AppLeS
parameter sweep template: user-level middleware for the Grid,” in Proc.
Super Computing 2000, Dallas, Texas, Nov. 2000.

[21] D. Abramson, J. Giddy and L. Kotler, “High performance parametric
modeling with Nimrod/G: Killer application for the global Grid?,” in
Proc. 14th Int. Parallel and Distributed Processing Symposium, Cancun,
Mexico, May 2000, pp. 520–528.

[22] S. Venugopal, R. Buyya and L. Winton, “A grid service broker for
scheduling distributed data-oriented applications on global Grids,” in

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1837International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

Proc. 2nd Int. Workshop on Middleware for Grid computing, Toronto,
Canada, Oct. 2004, pp. 75-80.

[23] D. Abramson, R. Buyya and J. Gidd, “A computational economy for grid
computing and its implementation in the Nimrod-G resource broker,”
Future Generation Computer Systems, vol. 18, no. 8, pp. 1061–1074,
Oct.2002.

[24] B. Beeson, S. Melnikoff, S. Venugopal and D. Barnes, “A portal for
grid-enabled physics,” in Proc. 2005 Australasian workshop on Grid
computing and e-research - volume 44, Newcastle, Australia, Jan.-Feb.
2005, pp. 13–20.

[25] T. Suzumara, H. Nakada, S. Matsuoka and H. Casanova, “GridSpeed: a
Web-based Grid portal generation server,” in Proc. 7th Int. Conf. on High
Performance Computing and Grid in Asia Pacific Region, Tokyo, Japan,
Jul. 2004, pp. 26–33.

[26] J. Frey, T. Tannenbaum, I. Foster and S. Tuecke, “Condor-G: a
computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, no. 3, pp. 237–246, 2004, Jul. 2002.

[27] The GridQTL portal [Online]. Available: http://www.gridqtl.org.uk

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:7, 2009

1838International Scholarly and Scientific Research & Innovation 3(7) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

7,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

37
.p

df

