
 

 

  
Abstract—Some meta-schedulers query the information system 

of individual supercomputers in order to submit jobs to the least busy 
supercomputer on a computational Grid. However, this information 
can become outdated by the time a job starts due to changes in 
scheduling priorities. The MSR scheme is based on Multiple 
Simultaneous Requests and can take advantage of opportunities 
resulting from these priorities changes. This paper presents the 
SWARM meta-scheduler, which can speed up the execution of large 
sets of tasks by minimizing the job queuing time through the 
submission of multiple requests. Performance tests have shown that 
this new meta-scheduler is faster than an implementation of the MSR 
scheme and the gLite meta-scheduler. SWARM has been used 
through the GridQTL project beta-testing portal during the past year. 
Statistics are provided for this usage and demonstrate its capacity to 
achieve reliably a substantial reduction of the execution time in 
production conditions. 
 

Keywords—Grid Computing, Multiple Simultaneous Requests, 
Fault tolerance, GridQTL.  

I. INTRODUCTION 
N recent years, the Grid has emerged as one of the most 
prominent solutions in supercomputing. Computational 

Grids enable the coordination of large computational 
resources in a geographically distributed environment across 
multiple administrative domains [1]. Setting up a Grid of High 
Performance Clusters (HPCs) scattered across several 
organizations requires sets of software tools called 
middleware such as the Globus Toolkit (GT) [2]. In order to 
submit jobs to Grid resources with the Globus Toolkit, users 
need to set up a certificate on the file system of the submitting 
machine and must authenticate through the Grid Security 
Infrastructure (GSI). When several people belong to the same 
research group, it may be convenient to set up a web portal 
which allows users to access a certain type of application. For 
security reasons, a single certificate is then used and can only 
be accessed by the administrator of the web server. 
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A GridSphere [3] portal was created for the GridQTL 
project [4] to provide tools for geneticists to perform 
Quantitative Trait Loci (QTL) mapping analyses [5] on the 
Grid. QTL are chromosomal regions affecting trait variation, 
and therefore likely to harbor genes of interest. Most GridQTL 
computations can be distributed on the Grid as Parameter 
Sweep Applications (PSA) i.e. computations that can be 
divided into independent tasks identified by a unique 
combination of parameters. Typically, a region of interest (e.g. 
part of a chromosome or the whole genome) is tested at 
regular intervals for the presence of QTL. A new GridQTL 
tool is the Linkage-Disequilibrium and Linkage Analysis 
(LDLA) module. It deals with complex populations, with the 
additional advantage that it incorporates information from 
pedigree and history simultaneously.  LDLA has been used 
mainly to refine QTL location [6], implying analyzing over 10 
to 200 positions in the region of interest.  Each position can be 
analyzed independently by a single task. LDLA uses 
likelihood optimization software in order to calculate the 
variance of QTL and the duration of the calculation depends 
on the number of steps to reach convergence.  

Tasks within one LDLA share input data. Therefore, the 
input dataset can be co-located i.e. it can be shared by all 
individual tasks. It is expected to be less than a few 
megabytes. GridQTL uses the NGS [7] as the main 
computational tool. GridQTL computations can also be sent to 
a local HPC, the ECDF [8] and a small local pool of 
workstations managed through the Condor middleware [9]. 
The computing elements of this Grid can be considered as 
quite homogenous since the slowest computing unit on the 
Condor pool can be roughly assessed as half the speed of the 
fastest element in the ECDF. The duration of the scheduled 
tasks depends on the type of data, the type of analysis and the 
number of steps necessary for the convergence of the 
likelihood calculation. Any assessment of the expected 
duration of each task is therefore expected to be quite 
inaccurate. The aim is to minimize the jobs makespan i.e. the 
time between sending the first input files to a computational 
server and receiving the last output. Since file transfer 
durations are considered negligible for LDL analyses when 
compared with the queuing and execution times and since the 
execution duration forecasts are expected to be inaccurate, our 
optimization effort has chiefly consisted in trying to minimize 
the time spent by these tasks in the queuing system of the 
Grid. This led us to develop a meta-scheduler called SWARM 
(Scheduling With A Request Multiplication) which 
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substantially speeds up PSAs by minimizing the queuing time 
on the Grid, and provides facilities required in a production 
environment such as failure handling and dynamic activity 
reports through a web interface. 

 Section 2 describes the details of the SWARM system 
architecture. In Section 3, the performance of the scheduler is 
evaluated. Section 4 presents some related schedulers, 
summarizes the findings and presents possible extensions.  

II. METHODS AND MATERIALS 

A. The Multiple Simultaneous Request (MSR) algorithm 
A task is defined as the calculation, e.g. computing a 

likelihood, and a job can be described as the means to perform 
the task on the Grid. When a task needs to be executed, it 
would intuitively make sense to schedule a job on the fastest 
cluster on the Grid with available nodes. However, querying 
the clusters on a Grid can take a few seconds due to the 
execution duration of the calls and the latency of the 
communications. By the time a meta-scheduler can access the 
information about the CPU availability for each cluster 
belonging to the Grid, this information may already have 
become inaccurate due to new scheduling events happening 
elsewhere in the meantime. This problem is compounded by 
the fact that a Grid includes many clusters and faults in the 
information system of any cluster should be expected at any 
time. When no cluster has any free node available, it is still 
possible to check that some clusters have queued jobs with 
fewer computational requirement than others by querying the 
workload management system of each cluster by means of 
middleware commands. Nevertheless, if a high priority user 
submits a job B after job A has been submitted, job A may 
have to wait in the queue until job B has started. 
Consequently, since the information available at the time of 
submission about the status of a particular cluster may change, 
it may be better to submit a job to several clusters in order to 
increase the chance of a short queuing duration for a particular 
task.  

The Multiple Simultaneous Requests (MSR) job algorithm 
has been designed to improve the performance when the 
priorities scheduled in supercomputers change [10]. In the 
original description, for each task which needs to be 
processed, a job is submitted on the k least loaded clusters. 
The first of these k jobs to start will carry out the task while 
the others will be cancelled, hence the MSR minimizes the 
queuing duration across these k clusters. Each job runs a call 
to the central meta-scheduler and checks if the task has started 
elsewhere. The operation is supposed to be atomic. However, 
the cancellation calls may be processed after some of these (k-
1) replicates (from now on referred to as “redundant 
replicates”) have started, and this can waste some CPU time. 
On a Grid composed of a few large clusters, k can be chosen 
as the number of clusters so that this step is not required. 

 
The grey boxes correspond to the time of the start of a particular task on a 

particular cluster. The white boxes correspond to the time of the cancellation 
of the redundant jobs associated with a particular task. The times are given 
with hypothetical values in seconds since the submission of the first job of the 
analysis i. e. the queuing times. 
 

Fig.  1 Time of the start and cancellation calls of jobs associated 
with a 5 tasks analysis on a 4 HPC Grid with the MSR algorithm 

 
The grey boxes correspond to the time of the start of a particular task on a 
particular cluster. The white boxes correspond to the time of the cancellation 
of the redundant jobs associated with a particular task. The times are given 
with hypothetical values in seconds since the submission of the first job of the 
analysis i. e. the queuing times. 
 

Fig. 2 Time of the start and cancellation calls of jobs associated 
with a 5 tasks analysis on a 4 HPC Grid with the SWARM algorithm. 

 
The MSR method has substantial theoretical advantages 

over more conventional methods since it is expected to deal 
more robustly with information system failures through the 
use of multiple requests. The original paper [10] presented test 
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results of the MSR scheme on the simulation of the activity of 
a 5000 contiguous jobs subset from the Cornell Theory 
Center. However, no implementation has been developed and 
released to work in a real grid environment. Hence, the MSR 
scheme did not take into account issues which happen in real 
production environments, such as network or node failures. 

B. The SWARM algorithm 
In a PSA context where n tasks need to be carried out, it 

would be possible to submit n MSR analyses and bundle the 
results at the end. That would typically mean kn ×  jobs if k 
is the number of clusters used on the Grid by the MSR. 
Unfortunately, it is likely that many of the redundant 
replicates of the first tasks will run and be cancelled before the 
later tasks have started. For instance, Fig. 1 describes the 
theoretical case of 5 tasks scheduled with the MSR algorithm 
on a Grid made of four clusters. Each task is expected to run 
for less than a second, i.e. a duration that is smaller than 
durations observed in reality between the scheduling 
decisions. In this example, 10 redundant jobs ran somewhere 
on the Grid before the last job corresponding to Task 5 started 
6 seconds after the jobs submission on HPC 3. The SWARM 
algorithm attempts to increase the overall speed by allowing 
redundant replicates of the first task to act as potential 
replicates of the later tasks (Fig. 2). Therefore no redundant 
replicates can happen before the last task has started. In the 
MSR, the replicates try to check if a job has started elsewhere 
for their respective task, whereas in the SWARM scheduler, 
the tasks send call-backs to the server to check the first index 
of the task which has not yet been processed. 

C. Implementation 
Next, the relation between the tasks executed on the Grid is 

described. Java Servlets [11] can communicate with remote 
clients provided the firewall on these remote clients allows 
outbound HTTP calls. Most NGS HPCs allow either the nodes 
to communicate with machines beyond the firewall through 
HTTP or indirectly via the head node. Consequently, a servlet 
has therefore been chosen as the corner stone of the SWARM 
meta-scheduler.  

The analysis starts when a web client calls the SWARM 
servlet and passes the information specifying the type of 
analysis and the parameters needed by the analysis. The input 
files that are common to all tasks are then uploaded on the 
head node of each Globus cluster. A Submit Description File 
is generated for each Condor pool so that the transfer of the 
common input files is done after the job submission. n jobs are 
then submitted to each cluster. For each of these jobs, a 
maximal job duration is calculated. 

Once the jobs are submitted, they will enter the queue on 
each cluster. When they start, they contact the SWARM 
servlet and wait for the servlet to send back the index i of the 
next task due to start. Input files that are required by a specific 
task only are then sent through GridFTP to the Globus 
resources. If this task runs on a Condor resource, the specific 
input file can also be downloaded from the web server. 

When a task has been successfully executed, the associated 
job contacts the SWARM servlet, which then retrieves the 
results from the Globus resources. The result files are then 
parsed. If they do not correspond to an expected format, it can 
be assumed that there was some kind of failure during the job 
execution (either a corruption of data or problems with the 
node executing the job). This type of failure is considered as 
an output failure. If the job has failed, the job is deleted from 
the memory, and therefore its task index can be allocated to 
another job that will start later. In case of output failure, new 
jobs are submitted to all clusters in order to ensure that a 
failed job can be restarted up to three times per task. If the job 
is considered as successful, then the completing process 
checks the number of other jobs having successfully 
completed. If all scheduled tasks have completed successfully, 
each cluster needs to cancel the redundant jobs. 

SWARM has been developed to deliver a service to a 
community of users running hundreds of analyses and 
thousands of tasks per day. Consequently, it must handle 
different types of failure. When the execution duration of a 
job on the Grid exceeds its expected maximal duration, the job 
is likely to be terminated by the cluster before the job ends 
successfully. In this case, a watchdog thread cancels the job 
and schedules it again with an expected maximal duration 
multiplied by three. This will be done for up to three duration 
failures per job. Jobs can also fail on the Grid due to hardware 
failures. In this case, the jobs do not report their results back 
to the SWARM servlet, and are then considered to have 
terminated due to a silent failure. In order to deal with 
computing node crashes, the watchdog thread checks that 
tasks allegedly active according to the servlet records are 
indeed active through Globus and Condor status checking 
commands. If the job is inactive and result files are missing, 
new jobs are submitted in the same way as in the case of 
output failures. In the case of a complete shutdown of a large 
part of the network around the server during the analysis 
submission, many job submissions may fail, since the clusters 
can not be contacted. If the watchdog thread notices that there 
is no active job on the Grid for a long time, it will attempt to 
submit new jobs on each active cluster. 

As described above, several threads can be running on the 
server while they try to check and alter the status of the jobs. 
In order to guarantee thread safety, Java synchronized 
statement are extensively used to protect the integrity of the 
data. In order to increase performance, reports retrievals are 
made without synchronization when an analysis is still 
running.  

D. Experimental Protocol 
In order to assess the performance of SWARM, a set of 

tests were run to compare the SWARM implementation, the 
MSR implementation and a third party meta-scheduler, the 
gLite Resource Broker (RB) [12]. gLite [13] is a middleware 
that has been developed as part of the EGEE project [14]. 
EGEE provides access to 41,000 CPUs across 250 sites 
worldwide.  
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The tests consisted of mapping QTL in a simulated 
population of 400 individuals. The same dataset was used for 
each test. Every test consisted of running 50 LDL Analyses at 
different positions simultaneously, so for each test 50 tasks 
had to be executed on the Grid. Each task lasted for about 2 
minutes and the total duration for each test is about two hours. 
These durations actually depend on the HPCs used during the 
computation. In terms of genetics, each analysis aimed to 
locate a simulated gene within a short chromosomal region. 
The chosen set-up resembles typical conditions that have been 
encountered in real data analyses. 

A series of simultaneous tests was run. Three sets of 15 
tests were carried out: one set with SWARM, another one 
with the MSR and a last one with gLite. For each subset, a 
couple of tests were run each day, with a working day 
considered as starting and finishing at 09:00 hrs.  This allowed 
us to test the schedulers at different times, in different load 
conditions. For each test, the gLite RB, the MSR scheme and 
the SWARM scheduler are started within a 5 s time interval in 
this order. During these tests, the three schedulers are 
expected to compete simultaneously to complete their tasks in 
the shortest duration.  

The resources used for each set of tests vary depending on 
the availability of the resources for each scheduler and the 
type of tests. The GridQTL project can access a set of NGS 
resources, a local Condor pool and the ECDF located in 
Edinburgh (Table I). These resources have different CPU 
specifications. The seven computational resources are 
available to both the SWARM and MSR schedulers. The gLite 
RB has been deployed in pre-production in March 2007 on the 
NGS. It runs on the NGS Oxford, Leeds, RAL and 
Westminster HPCs. At the time of the experiments, the NGS 
Manchester HPC could not be used by the gLite RB, and gLite 
had yet to be set up on the ECDF. Consequently, the HPC 
used for the tests are the four supercomputers that are 
available to the gLite RB.  

Before the test could be run, the LDLA had first to be 
implemented with the different schedulers. The SWARM tests 
were implemented as single SWARM analyses of the 50 
positions. It is possible to narrow the SWARM algorithm so 
that it runs the MSR scheme. The MSR tests have been 
implemented as 50 SWARM analyses submitted and run in 
parallel. Each MSR analysis is expected to handle a single 
position. The steering algorithm works as follows: since all 
the 50 analyses share their input data, it is transferred before 
the job submission with the meta-scheduler. Then, the MSR 
analyses submission starts through a set of calls to the meta-
scheduler. Once all MSR tasks have been submitted, the script 
calls the meta-scheduler every 5 seconds and checks the status 
of the 50 MSR analyses at once. When the 50 MSR analyses 
have completed, the resulting output files are post-processed. 
Then, the MSR test has terminated and the test duration and 
statistics are recorded. 

For the gLite tests, a feature of gLite allows a ranking to be 
set between the machines to be selected for job submission. 
The ranking method for site selection has been set so that sites 

with the most available CPUs are chosen in priority if no job 
is queuing there. If all sites have some queuing jobs, the site 
selected is the site with the smallest number of jobs in the 
queue. This ranking method is supposed to be better than only 
using the number of free CPUs according to gLite 
documentation since the number of free CPUs is advertised 
per queue and not per virtual organization [15]. The gLite 
implementation uses an algorithm similar to the MSR 
implementation. First, the input files are sent simultaneously 
to each of the sites. When all transfers have terminated, the 
shell script submits 50 jobs with the gLite RB. When all 
analyses have been submitted, a loop is started and the script 
checks if a job has completed during every iteration. If a job 
has completed, the results are downloaded and then the loop 
moves on to the next iteration. If the current job has not yet 
completed, the scripts sleeps for 5 s, and checks again whether 
the job has completed, and so on until completion. Once the 
computation has completed, the result file for each gLite job 
are post-processed, and then duration statistics are recorded. It 
is important to note that this implementation does not include 
features for failures management such as restarting failed jobs. 
Consequently, when a gLite test stopped because of a failure, 
the entire test was discarded and a new one was started 
instead. 

III. RESULTS 

A. Experimental performance measurements 
Several measurements were recorded during these tests. 

Table II provide results about the wall clock duration, the real 
duration, the speed up ratio, the total duration of the redundant 
replicates, the number of output failures, the queuing time and 
the number of HPC used successfully during the computation. 
As for all durations in these experiments, the time unit used is 
the second. The real duration is the duration between the start 
of the process calling the LDLA script and the termination of 
the last output files retrieval from the compute nodes. The 
wall clock duration is defined as the total sum of the durations 
of the successful jobs running on the Grid. The speed up ratio 

TABLE I 
RESOURCES AVAILABLE TO THE SWARM SCHEDULER 

Cluster NbCPU T100MF WMS Used during 
the tests 

ECDF 1536 0.67 SGE NO 
NGS-2 
Westminster 

256 
 

0.99 
 

PBS YES 

NGS-2 Oxford 256 1.03 PBS YES 
NGS-2 Leeds 256 0.97 PBS YES 
NGS-2 RAL 256 1.05 LSF YES 
NGS-2 
Manchester 

256 1.08 PBS NO 

Local Condor 
Pool 

6 Min : 0.64 
Max : 0.65 

Condor NO 

NbCPU is the total number of cores of the compute nodes. 
T100MF is the time taken by a CPU to run the 100 MFlops in a second 

according to our benchmark, which is a C++ program.  
WMS is the the Workload Management System available on the HPC 

(SGE = Sun Grid Engine, PBS = Portable Batch Scheduler, LSF = Load 
Sharing Facility ). 
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is calculated as the wall clock duration divided by the real 
duration. The “queuing time” for a particular job is defined as 
the duration between start of the process calling the LDLA 
script for each of the scheduler and the start of the job on the 
compute node. The queuing time includes the duration of the 
transfer of the common input files to the head nodes of the 
HPCs. The “redundant duration” is defined as the total sum of 
the wall clock durations of the redundant replicates running on 
the Grid. In the case of the MSR and SWARM experiments, 
the number of output failures was recorded. There were also 
silent failures but these were not recorded as they do not 
require jobs to be restarted if they are not also output failures 
i.e. when a job runs successfully but does not report back as 
completed. Except in a few cases, the output failures were 
temporary failures i.e. the results were obtained after the failed 
jobs were re-submitted. The number of HPCs used during the 
computation is the number of HPCs on which at least one job 
ran, successfully completed and gave results back to the 
cluster.  

The simultaneous series of tests aimed to provide an 
environment where the load conditions and computing nodes 
were the same (Table II). For all tests except one, the speed up 
ratio is higher for SWARM and the MSR than for the gLite 
RB.  

The MSR and SWARM scheduler are significantly faster 
than the gLite resource broker for this set of analyses In the 
case of the MSR scheme, the average real duration, the 
average wall clock duration and the speed up ratio are 
respectively 628.8 s, 8110 s and 15.8. SWARM is even faster 
since the average real duration equals 524.6 s, the wall clock 
duration is 8612 s and the speed up ratio equals 21.4. For 11 
tests, SWARM is the fastest scheduler to complete the 
computation, whereas the MSR is faster in 3 other cases. This 
can be related to shorter queuing times for SWARM since the 
average queuing time equals 276.9 s in the case of the MSR 
whereas the average queuing time is 143.6 s for SWARM. 
Similarly, the maximum queuing time 457.6 s for the MSR is 
longer than the maximum queuing time 347.8 s for SWARM. 
The average number of output failure for the MSR was 1.6 
and 1.7 for SWARM. Since no resumption mechanism has 
been implemented in gLite, output failures were not recorded 
and in case of failures another test was performed. 

B. SWARM as a production scheduler 
SWARM has been used since March 2008 as part of the 

pre-production LDLA beta-testing portlet [16]. This portlet 
has been developed within the scope of the GridQTL [4] 
project. GridQTL uses an open source portlet-based portal 
framework known as GridSphere [3]. GridSphere portlets are 
self-contained modular software components that provide 
specific facilities within a general portal architecture. They 
typically appear as pluggable windows on the web page, and 
provide a flexible and intuitive interface to a web portal. Both 
the GridSphere portlets and the SWARM meta-scheduler use 
the Apache Tomcat web container [17]. It is therefore quite 
straightforward to have the GridSphere portlets work 

alongside SWARM. In order to provide usage transparency, a 
technology called AJAX [18] allows dynamic calls from a 
web page to a servlet running on a server. This method 
combines Asynchronous JavaScript calls and XML HTTP 
requests. A JavaScript timer can refresh the web page at a 
given frequency and hence provides a dynamic interface. 
XML HTTP requests to a web server allow the text provided 
within an HTTP response to be used in a JavaScript function.  

Previous sections presented tests involving a LDLA with 50 
positions to be analyzed. Some of the users have run much 
larger computations, and this has helped us to address some 
weaknesses in the scheduler. For instance, some users ran 
LDLA analysis on hundreds of positions. Intuitively, it would 
be most efficient to send the final cancelling calls all together 
in parallel in order to cancel many redundant replicates before 
they start and therefore reduce the redundant duration. 
However, it has been noticed that sending hundreds of 
cancelling calls simultaneously had severe side effects on the 
server’s performance, and could crash the Tomcat server. 
Therefore thread pools are used to send a certain, limited 
maximum number of simultaneous cancelling calls. For most 
analyses run in the LDLA beta-testing phase, it happened 
rarely that a single cluster processed more than 70 percent of 
the tasks. Consequently, other improvements were 
implemented to reduce the number of redundant replicates. 
For instance, the configuration file allows a reduction in the 
number of replicates on a particular cluster.  

When the MSR scheme can access both NGS resources, the 
Condor pool and the ECDF, some tests have shown that the 
MSR  scheme seems to often select the ECDF, the fastest HPC 
according to Table I, and although this choice should lead to 
smaller computing times, MSR was still slower than 
SWARM. A simple feature has therefore been added to 
SWARM for production use to favor the selection of faster 
clusters if they are available: it is possible to set in the 
configuration files a small delay before the submission of jobs 
on particular clusters. This is to help faster clusters to be 
selected when several HPCs of heterogeneous speed are 
available. The slower the HPCs, the longer the duration of this 
delay can be set. 

A computational grid can be heterogeneous in terms of the 
speed of the HPCs involved, but it is chiefly the heterogeneity 
of the policies of use between virtual organizations that 
differentiates Grid computing from distributed computing. In 
particular, the NGS restricts its usage by providing a limited 

TABLE II 
PERFORMANCE MEASUREMENTS OF SWARM, MSR & GLITE 

Queuing 
Time (s) 

Duration (s) Speed up 
ratio 

Type 
Avg. Max. Real Wall 

Clock 
Redun-

dant 
 

gLite 359 731 3475 9878 n.a. 5.6 
MSR 257 458 629 8110 28 15.8 
SWARM 144 348 525 8612 37 21.4 

The values given correspond to the average values of the measurements 
over the corresponding 15 tests, without taking into account the single 
interrupted gLite test.  
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CPU hours account whereas access to the ECDF and the 
Condor pool is not restricted. In order to improve the level of 
service provided to the users, the SWARM scheduler can 
check a monthly CPU allowance provided to each user and 
submit jobs on a set of resources depending on the previous 
usage and therefore implement a fair share usage policy 
among users.  

Since its release, the use of SWARM through the LDLA 
portlet has enabled bug identification and correction and the 
testing of the capacity of SWARM to significantly speed up 
much larger computations than those run in section 3. 
Between March 2008 and April 2009, SWARM has allowed 
57 external users to run 1934 analyses i.e. a total of 155684 
independent tasks, which required 10118 hours of 
computation. Table III displays the 15 largest computations 
run in October and November 2008. They show the capacity 
of SWARM to achieve large speed up ratios of up to 147 on 
computations lasting for more than 28 hours. 

Some datasets uploaded by the LDLA external users 
required tens of gigabytes of RAM and tens of gigabytes of 
temporary space storage on the HPC head nodes in order to be 
analyzed. All clusters cannot provide this to all jobs. Some 
features were added to SWARM so that entire HPC 
computing nodes can be booked for particular jobs requiring a 
lot of memory. When some analyses require a large amount of 
temporary disk space, the supercomputers allow only a few 
jobs to run on them depending on the size of their local 
storage facilities and the disk size required by the job. This 
may lead to situations where there are fewer jobs scheduled on 
the Grid than tasks to be performed. In this case, the 
resubmission mechanism of SWARM is then used to submit 
new jobs when the previous ones have terminated and the 
temporary space storage has been made available again. This 
mechanism will be called until all tasks have been processed. 

IV. DISCUSSION 
Scheduling jobs effectively is one of the most crucial 

problems in Grid computing. Some middleware try to provide 
a solution by focusing on particular types of applications, e.g. 
Nimrod/G [19] and AppLeS [20], whereas Condor [9] is 
particularly good at handling a large number of jobs on a set 
of resources in a distributed computing context and has been 
extended to be also an all-around solution in Grid computing. 

Nimrod/G's scheduling approach is based on deadlines and 
on a Grid economy model [19][21]. Some input parameters 
need to be provided. For instance, a resource owner has to set 
the resource cost. The user has to specify the maximal price to 
be paid and may provide a deadline before which an 
application execution needs to have completed. The Nimrod/G 
resource broker queries the Globus Monitoring and Discovery 
System (MDS) and identifies available resources. Then, it 
tries to distribute jobs so that the maximal usage cost, which 
depends on the usage cost of each resource, and deadlines are 
respected. During the execution, when cheaper or faster 
available resources are discovered, jobs may be migrated 

away from slow or expensive resources. Nimrod/G can 
evaluate the job duration by using some execution rate 
measurement. The Gridbus Resource broker provides an 
extension to Nimrod/G to optimize PSAs with large datasets 
[22]. Features were included in order to enable trading the 
capacity to speed up a distributed calculation versus a possible 
reduction of the economical cost of the calculation on a world 
wide Grid [23]. A portal for high energy physics and 
astrophysical computations was designed to steer the 
calculations with the Gridbus broker on Grids [24]. Grid 
activity progress reports can be generated at the user’s request 
though there is no facility such as AJAX to automate reports 
delivery. This portal has been designed so that it can be easily 
extended to cope with different types of physics computations.  

AppLeS [20] is another meta-scheduler that focuses on 
PSAs and more particularly on co-location of data and 
experiments and adaptive scheduling. Basically, AppLeS tries 
to minimize dynamically the job makespan. AppLeS monitors 
the state of the Grid by frequently calling scheduling events. 
For each scheduling event, a heuristic is used in order to 
provide the best scheduling plan and requires only the 
estimation of the execution and transfer time. Both AppLeS 
and Nimrod/G continuously re-evaluate and plan again their 
schedule: they frequently use scheduling events during which 
they query resources about their status, identify available 
resources and then use their own heuristics to create a 
scheduling plan with the available resources. The AppLeS 
scheduler can also be used through a web portal. For instance, 
AppLeS is used in the GridSpeed [25] project, which allows 
non-specialists to develop application portals. 

Condor [9] is a general purpose middleware for Grid and 
distributed computing. Condor allows a cluster to be created 
that collects the computing power of thousands of idle 
workstations. A single job queue is created on the Condor 
Central manager, and as soon as a resource becomes available, 
the job with the highest priority can be scheduled on this 
resource. This central manager keeps a record of the activity 
of each resource, and is responsible for migrating jobs. A 
mechanism of Condor called Condor-G allows jobs to be 
submitted to Globus resources [26]. Another Condor 

TABLE III 
THE 15 LARGEST LDLA COMPUTATIONS RUN BY 6 EXTERNAL 

USERS IN OCTOBER AND NOVEMBER 2008 

Time and date of 
the computation 

Real duration 
in minutes 

Wall clock 
duration in hours 

Speed up 
ratio 

13/10 09:50 74.1 49.6 40.2 
27/10 09:08 55.7 40.4 43.5 
27/10 10:45 53.1 39.7 44.9 
30/10 09:29 13.9 29.5 127.0 
31/10 02:51 112.5 37.2 19.9 
31/10 06:22 119.6 36.4 18.2 
01/11 13:37 14.8 36.5 147.8 
05/11 10:49 14.3 33.7 141.8 
05/11 11:19 18.5 35.4 114.6 
08/11 01:20 190.9 286.5 90.0 
08/11 09:52 370.4 106.9 17.3 
11/11 16:45 353.0 171.7 29.2 
11/18 16:49 74.4 46.0 37.1 
11/19 08:57 14.4 31.0 129.2 
11/19 13:27 93.0 47.4 30.6 
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mechanism called GlideIn transforms Globus resources into 
resources that can be accessed directly through the Condor 
central manager. Therefore, the combined usage of Condor-G 
and GlideIn allows aggregating the resources provided by 
many Globus HPCs in order to create a large and centralized 
cluster of resources coordinated by the Condor central 
manager. A major hurdle in the use of GlideIn jobs is the 
possibility that they may be prevented from contacting the 
central manager by the firewall of these clusters. For instance, 
GlideIn jobs communications were blocked by the firewall of 
the NGS clusters. 

SWARM meta-scheduler has been designed to minimize 
the queuing time for PSA. It includes features necessary in a 
real Grid production environment such as failures 
management, dynamic and transparent reporting, and fair 
share usage policies. In order to offer both a user-friendly 
web-based environment and fast analyses, responsiveness has 
been considered as paramount in the design of the scheduler to 
be used in the GridQTL portal. The use of call-backs has 
therefore been preferred to the use of scheduling events, 
which power meta-schedulers such as AppLes and Nimrod/G. 
SWARM can speed up analyzes by a large factor on a Grid 
composed of HPCs belonging to the UK National Grid 
Service and local resources. Unlike GlideIn, SWARM does 
not need firewall settings to be adjusted as long as the HPCs 
used in the calculation allow outbound HTTP or HTTPS 
connections. Unlike AppLes, SWARM has not been designed 
to handle efficiently the scheduling of PSA with large input or 
output datasets. SWARM has not either been designed to take 
into consideration the economical cost of the resources usage 
on a world wide Grid as Nimrod/G does. 

The SWARM meta-scheduler has been compared to an 
implementation of the MSR scheme and the gLite Resource 
Brokers. Comparisons show that the queuing time is lower for 
SWARM than for the other schedulers. Consequently LDLA 
analyses are completed significantly faster with SWARM than 
with the other methods. SWARM has been deployed within 
the LDLA beta-testing portal (GridQTL project), speeding up 
significantly computationally intensive analyses.  

 The SWARM source code will be distributed under the 
GNU lesser general public license and can be obtained from 
the authors or online on the GridQTL website [27]. 
Minimizing the queuing time has been shown to help speed up 
the execution of a large number of jobs. When the job 
duration is short, the queuing time is a critical factor. Some 
extensions could be brought to SWARM for other types of 
problems where the queuing duration can be long. For 
instance, it could also be extended so that MPI programs 
requiring a large number of CPUs may have to queue less 
until the right number of CPUs is available by scheduling 
them simultaneously on several clusters through a similar 
method. 
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