Search results for: fuel densities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 737

Search results for: fuel densities

377 Natural Gas Dehydration Process Simulation and Optimization: A Case Study of Khurmala Field in Iraqi Kurdistan Region

Authors: R. Abdulrahman, I. Sebastine

Abstract:

Natural gas is the most popular fossil fuel in the current era and future as well. Natural gas is existed in underground reservoirs so it may contain many of non-hydrocarbon components for instance, hydrogen sulfide, nitrogen and water vapor. These impurities are undesirable compounds and cause several technical problems for example, corrosion and environment pollution. Therefore, these impurities should be reduce or removed from natural gas stream. Khurmala dome is located in southwest Erbil-Kurdistan region. The Kurdistan region government has paid great attention for this dome to provide the fuel for Kurdistan region. However, the Khurmala associated natural gas is currently flaring at the field. Moreover, nowadays there is a plan to recover and trade this gas and to use it either as feedstock to power station or to sell it in global market. However, the laboratory analysis has showed that the Khurmala sour gas has huge quantities of H2S about (5.3%) and CO2 about (4.4%). Indeed, Khurmala gas sweetening process has been removed in previous study by using Aspen HYSYS. However, Khurmala sweet gas still contents some quintets of water about 23 ppm in sweet gas stream. This amount of water should be removed or reduced. Indeed, water content in natural gas cause several technical problems such as hydrates and corrosion. Therefore, this study aims to simulate the prospective Khurmala gas dehydration process by using Aspen HYSYS V. 7.3 program. Moreover, the simulation process succeeded in reducing the water content to less than 0.1ppm. In addition, the simulation work is also achieved process optimization by using several desiccant types for example, TEG and DEG and it also study the relationship between absorbents type and its circulation rate with HCs losses from glycol regenerator tower.

Keywords: Aspen Hysys, Process simulation, gas dehydration, process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8931
376 Effect of Pre-Plasma Potential on Laser Ion Acceleration

Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz

Abstract:

In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.

Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
375 The Influence of Biofuels on the Permeability of Sand-Bentonite Liners

Authors: Mousa Bani Baker, Maria Elektorowicz, Adel Hanna, Altayeb Qasem

Abstract:

Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.

Keywords: Biofuel, Ethanol; Hydraulic conductivity Landfill, Leakage, Liner failure, Liner performance Fine-grained soils, Particle size, Sand-bentonite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
374 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on abiotic depletion potential (ADP) and acidification potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on ecotaxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: Biodiesel, Ethanol, Life Cycle Assessment, Methanol, Soybean Oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3366
373 Preparation of Homogeneous Dense Composite of Zirconia and Alumina (ZTA)using Colloidal Filtration

Authors: H. Wakily, M. Mehrali, H. S. C. Metselaar

Abstract:

Homogeneous composites of alumina and zirconia with a small amount of MgO (<1 wt %) were prepared by colloidal filtration. The object of using ZrO2 (15wt %) was to provide zirconia toughened alumina (ZTA). Suspensions of alumina and Zirconia with various solid loadings and various concentrations of Dolapix CE64 as surfactant were studied. The stability of these suspensions was investigated using rheological measurements. The optimum amount of using Dolapix was 0.8wt% for ZTA containing MgO suspension which gave low apparent viscosity in basic area (100 mPa s at shear rate of 50 s-1). The satisfactory mixtures were made into sample pallets using colloidal filtration. The process was completed with pressureless sintering in suitable temperature. Phase, grain size and qualitative compositional analysis were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM) images. ZTA containing 0.05 wt% MgO shows the lowest grain size for alumina around 0.5 μm. Densification studies show that near full densities (>99%) were obtained for ZTA ceramic containing 0.05 wt% MgO in 1500 °C.

Keywords: Colloidal filtration, Dolapix, MgO, Zirconiatoughened alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961
372 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
371 Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.

Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2949
370 The Effects of Plant Density and Row Spacing on the Height of Maize Hybrids of Different Vegetation Time and Genotype

Authors: E. Murányi, P. Pepó

Abstract:

The small plot experiment was set in 2013 at the RISFLátókép Experimental Farm of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen, on lime-coated chernozem soil in four replications. The final heights of the maize hybrids were studied at three plant densities (50, 70, and 90 thousand ha-1) and two row spacing (45 and 76cm). During the experiment, we have investigated the development of the final plant heights of five maize hybrids of different vegetation time and genotype: Sarolta, DKC 4025, P 9175, Reseda/P 37M81, and SY Affinity. In the development of the plant heights, the tiller number and the hybrid were the decisive factors. The increasing stock density resulted in significant difference in the plant height values, while the row spacing did not. With the increase of plant density and the length of vegetation time, the heights of the individual plants increased.

Keywords: Maize, plant density, row spacing, plant height, genotype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
369 A Pilot Study for the Optimization of Routes for Waste Collection Vehicles for the Göçmenköy District of Lefkoşa

Authors: Nergiz Fırıncı, Aysun Çelik, Ertan Akün, Md. Atif Khan

Abstract:

A pilot project was carried out in 2007 by the senior students of Cyprus International University, aiming to minimize the total cost of waste collection in Northern Cyprus. Many developed and developing countries have cut their transportation costs – which lies between 30-40% – down at a rate of 40% percent, by implementing network models for their route assignments. Accordingly, a network model was implemented at Göçmenköy district, to optimize and standardize waste collection works. The work environment of the employees were also redesigned to provide maximum ergonomy and to increase productivity, efficiency and safety. Following the collection of the required data including waste densities, lengths of roads and population, a model was constructed to allocate the optimal route assignment for the waste collection trucks at Göçmenköy district.

Keywords: Minimization, waste collection, operations cost, transportation, ergonomy, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
368 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant

Authors: Cigdem Safak Saglam

Abstract:

Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.

Keywords: Thermal power plant, lignite coal, pre-treatment, demineralization, electrodialysis, recycling, waste water, process water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
367 Adhesion Strength Evaluation Methods in Thermally Sprayed Coatings

Authors: M.Jalali Azizpour, H.Mohammadi majd, Milad Jalali, H.Fasihi

Abstract:

The techniques for estimating the adhesive and cohesive strength in high velocity oxy fuel (HVOF) thermal spray coatings have been discussed and compared. The development trend and the last investigation have been studied. We will focus on benefits and limitations of these methods in different process and materials.

Keywords: Adhesion, Bonding strength, Cohesion, HVOF Thermal spray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
366 Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.

Keywords: Binary Integer Linear Programming, BILP, Energy consumption, Optimal node placement and Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
365 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: Aluminum matrix composites, Intermetallics Spark plasma sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
364 Energy Supply, Demand and Environmental Analysis – A Case Study of Indian Energy Scenario

Authors: I.V. Saradhi, G.G. Pandit, V.D. Puranik

Abstract:

Increasing concerns over climate change have limited the liberal usage of available energy technology options. India faces a formidable challenge to meet its energy needs and provide adequate energy of desired quality in various forms to users in sustainable manner at reasonable costs. In this paper, work carried out with an objective to study the role of various energy technology options under different scenarios namely base line scenario, high nuclear scenario, high renewable scenario, low growth and high growth rate scenario. The study has been carried out using Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model which evaluates the alternative energy supply strategies with user defined constraints on fuel availability, environmental regulations etc. The projected electricity demand, at the end of study period i.e. 2035 is 500490 MWYr. The model predicted the share of the demand by Thermal: 428170 MWYr, Hydro: 40320 MWYr, Nuclear: 14000 MWYr, Wind: 18000 MWYr in the base line scenario. Coal remains the dominant fuel for production of electricity during the study period. However, the import dependency of coal increased during the study period. In baseline scenario the cumulative carbon dioxide emissions upto 2035 are about 11,000 million tones of CO2. In the scenario of high nuclear capacity the carbon dioxide emissions reduced by 10 % when nuclear energy share increased to 9 % compared to 3 % in baseline scenario. Similarly aggressive use of renewables reduces 4 % of carbon dioxide emissions.

Keywords: Carbon dioxide, energy, electricity, message.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732
363 Evaluation on the Viability of Combined Heat and Power with Different Distributed Generation Technologies for Various Bindings in Japan

Authors: Yingjun Ruan, Qingrong Liu, Weiguo Zhou, Toshiyuki Watanabe

Abstract:

This paper has examined the energy consumption characteristics in six different buildings including apartments, offices, commercial buildings, hospitals, hotels and educational facilities. Then 5-hectare (50000m2) development site for respective building-s type has been assumed as case study to evaluate the introduction effect of Combined Heat and Power (CHP). All kinds of CHP systems with different distributed generation technologies including Gas Turbine (GT), Gas Engine (GE), Diesel Engine (DE), Solid Oxide Fuel Cell (SOFC) and Polymer Electrolyte Fuel Cell (PEFC), have been simulated by using HEATMAP, CHP system analysis software. And their primary energy utilization efficiency, energy saving ratio and CO2 reduction ratio have evaluated and compared respectively. The results can be summarized as follows: Various buildings have their special heat to power ratio characteristics. Matching the heat to power ratio demanded from an individual building with that supplied from a CHP system is very important. It is necessary to select a reasonable distributed generation technologies according to the load characteristics of various buildings. Distributed generation technologies with high energy generating efficiency and low heat to power ratio, like SOFC and PEFC is more reasonable selection for Building Combined Heat and Power (BCHP). CHP system is an attractive option for hotels, hospitals and apartments in Japan. The users can achieve high energy saving and environmental benefit by introducing a CHP systems. In others buildings, especially like commercial buildings and offices, the introduction of CHP system is unreasonable.

Keywords: Combined heat and power, distributed generation technologies, heat-tao-power ratio, energy saving ratio, CO2 reduction ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
362 Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations

Authors: Liangliang Tang, Chang Xu, Xingying Chen

Abstract:

GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells.

Keywords: Thermophotovoltaic cell, GaSb, GaInAsSb, diffused emitters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
361 Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber

Authors: F. Noto, G. Costa, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

At Istituto Nazionale di Fisica Nucleare – Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems.

Keywords: FEM Analysis, ECR ion source, dielectrical measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
360 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle

Authors: Khaled M. Khader, Mamdouh I. Elimy

Abstract:

Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.

Keywords: Composite material, crank-rocker mechanism, transmission angle, design techniques, power saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
359 Study of Thermal Effects while Filling an Empty Tank

Authors: Y. Kerboua Ziari, M. Benouahlima, A. Benzaoui

Abstract:

We are interested in this paper to the thermal effects occurring during the filling of hydrogen tanks. The consequence of this heating on the storage performance of these speakers was appreciated. The motivation comes from the fact that the development of hydrogen as an energy carrier of the future will require strong evolution in the field of storage modes to smaller, less expensive lighter, with a strong security interest and considerable autonomy.

Keywords: Hydrogen, Fuel, Storage, Energy, Modeling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
358 Physicochemical Parameters and Economic Evaluation of Bio Ethanol Produced from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

The fight against climate change and the replacement of fossil energies nearing exhaustion gradually emerge as major societal and economic challenges. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: Bio energy, waste dates, bio ethanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
357 Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods

Authors: N. Aldea, V. Rednic, F. Matei, Tiandou Hu, M. Neumann

Abstract:

The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.

Keywords: local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorptionspectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
356 Comparative Studies on Dissimilar Metals thin Sheets Using Laser Beam Welding - A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Laser beam welding for the dissimilar Titanium and Aluminium thin sheets is an emerging area which is having wider applications in aerospace, aircraft, automotive, electronics and in other industries due to its high speed, non-contact, precision with low heat effects, least welding distortion, low labor costs and convenient operation. Laser beam welding of dissimilar metal combinations are increasingly demanded due to high energy densities with small fusion and heat affected zones. Furthermore, no filler or electrode material is required and contamination of weld is also very small. The present study is to reviews the influence of different parameters like laser power, welding speed, power density, beam diameter, focusing distance and type of shielding gas on the mechanical properties of dissimilar metal combinations like SS/Al, Cu/Al and Ti/Al focusing on aluminum to other materials. Research findings reveal that Ti/Al combination gives better metallurgical and mechanical properties than other combinations such as SS/Al and Cu/Al.

Keywords: Laser Beam Welding, dissimilar metals, SS/Al, Cu/Al and Ti/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
355 Molecular Dynamics Simulation of Liquid-Vapor Interface on the Solid Surface Using the GEAR-S Algorithm

Authors: D. Toghraie, A. R. Azimian

Abstract:

In this paper, the Lennard -Jones potential is applied to molecules of liquid argon as well as its vapor and platinum as solid surface in order to perform a non-equilibrium molecular dynamics simulation to study the microscopic aspects of liquid-vapor-solid interactions. The channel is periodic in x and y directions and along z direction it is bounded by atomic walls. It was found that density of the liquids near the solid walls fluctuated greatly and that the structure was more like a solid than a liquid. This indicates that the interactions of solid and liquid molecules are very strong. The resultant surface tension, liquid density and vapor density are found to be well predicted when compared with the experimental data for argon. Liquid and vapor densities were found to depend on the cutoff radius which induces the use of P3M (particle-particle particle-mesh) method which was implemented for evaluation of force and surface tension.

Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
354 Compositional and Morphological Characteristics of the Tissues of Three Common Dates Grown in Algeria

Authors: H. Amellal-Chibane, Y. Noui, A. Djouab, S. Benamara

Abstract:

Mech-Degla, Degla-Beida and Frezza are the date (Phoenix dactylifera L.) common varieties with a more or less good availability and feeble trade value. Some morphologic and physicochemical factors were determined. Results show that the whole date weight is significantly different (P= 95%) concerning Mech-Degla and Degla-Beida which are more commercialized than Frezza whereas the pulp mass proportion in relation to whole fruits is highest for Frezza (88.28%). Moreover, there is a large variability concerning the weights and densities of constitutive tissues in each variety. The white tissue is dominant in Mech-Degla in opposite to the two other varieties. The variance analyze showed that the difference in weights between brown and white tissues is significant (P = 95%) for all studied varieties. Some other morphologic and chemical proprieties of the whole pulps and their two constitutive parts (brown or pigmented and white) are also investigated. The predominance of phenolics in Mech-Degla (4.01g/100g, w.b) and Frezza (4.96 g/100g, w.b) pulps brown part is the main result revealed in this study.

Keywords: Common dates, phenolics, sugars, tissues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
353 More Realistic Model for Simulating Min Protein Dynamics: Lattice Boltzmann Method Incorporating the Role of Nucleoids

Authors: J.Yojina, W. Ngamsaad, N. Nuttavut, D.Triampo, Y. Lenbury, W. Triampo, P. Kanthang, S.Sriyab

Abstract:

The dynamics of Min proteins plays a center role in accurate cell division. Although the nucleoids may presumably play an important role in prokaryotic cell division, there is a lack of models to account for its participation. In this work, we apply the lattice Boltzmann method to investigate protein oscillation based on a mesoscopic model that takes into account the nucleoid-s role. We found that our numerical results are in reasonably good agreement with the previous experimental results On comparing with the other computational models without the presence of nucleoids, the highlight of our finding is that the local densities of MinD and MinE on the cytoplasmic membrane increases, especially along the cell width, when the size of the obstacle increases, leading to a more distinct cap-like structure at the poles. This feature indicated the realistic pattern and reflected the combination of Min protein dynamics and nucleoid-s role.

Keywords: lattice Boltzmann method, cell division, Minproteins oscillation, nucleoid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
352 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: Ultra-wideband, propagation, line-of-sight, non-line-of-sight, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
351 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines

Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines. 

Keywords: Beam deformation, EPS block, laboratory test, post-beam system, soil surface settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
350 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production

Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre

Abstract:

In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.

Keywords: Au nanoparticles, hydrogen evolution reaction, porous Ni electrodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
349 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
348 Flow Properties of Commercial Infant Formula Powders

Authors: Maja Benkovic, Ingrid Bauman

Abstract:

The objective of this work was to investigate flow properties of powdered infant formula samples. Samples were purchased at a local pharmacy and differed in composition. Lactose free infant formula, gluten free infant formula and infant formulas containing dietary fibers and probiotics were tested and compared with a regular infant formula sample which did not contain any of these supplements. Particle size and bulk density were determined and their influence on flow properties was discussed. There were no significant differences in bulk densities of the samples, therefore the connection between flow properties and bulk density could not be determined. Lactose free infant formula showed flow properties different to standard supplement-free sample. Gluten free infant formula with addition of probiotic microorganisms and dietary fiber had the narrowest particle size distribution range and exhibited the best flow properties. All the other samples exhibited the same tendency of decreasing compaction coefficient with increasing flow speed, which means they all become freer flowing with higher flow speeds.

Keywords: flow properties, infant formula, powderedmaterial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070