Search results for: Hardened concrete characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3203

Search results for: Hardened concrete characteristics

2843 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: Crack formation. experiment. mathematical modeling. reinforced concrete. vibrodiagnostics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
2842 Tests and Measurements of Image Acquisition Characteristics for Image Sensors

Authors: Seongsoo Lee, Jong-Bae Lee, Wookkang Lee, Duyen Hai Pham

Abstract:

In the image sensors, the acquired image often differs from the real image in luminance or chrominance due to fabrication defects or nonlinear characteristics, which often lead to pixel defects or sensor failure. Therefore, the image acquisition characteristics of image sensors should be measured and tested before they are mounted on the target product. In this paper, the standardized test and measurement methods of image sensors are introduced. It applies standard light source to the image sensor under test, and the characteristics of the acquired image is compared with ideal values.

Keywords: Image Sensor, Image Acquisition Characteristics, Defect, Failure, Standard, Test, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
2841 An Overview of Electronic Waste as Aggregate in Concrete

Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan

Abstract:

Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.

Keywords: Disposal, electronic waste, landfill, toxic chemicals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781
2840 Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

Authors: Haider M. Alsaeq

Abstract:

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Keywords: Deep Beams, Finite Element, Opening, Reinforced Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4236
2839 Influence of Fibre Content on Crack Propagation Rate in Fibre-Reinforced Concrete Beams

Authors: Amir M. Alani, Morteza Aboutalebi, Martin J. King

Abstract:

Experimental study on the influence of fibre content on crack behaviour and propagation in synthetic-fibre reinforced beams has been reported in this paper. The tensile behaviour of metallic fibre concrete is evaluated in terms of residual flexural tensile strength values determined from the load-crack mouth opening displacement curve or load-deflection curve obtained by applying a centre-point load on a simply supported notched prism. The results achieved demonstrate that an increase in fibre content has an almost negligible effect on compressive and tensile splitting properties, causes a marginal increment in flexural tensile strength and increasesthe Re3 value.

Keywords: Fibre-Reinforced Concrete, Crack, Flexural Test, Ductility, Fibre Content, Experimental Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3699
2838 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fares

Abstract:

In the present work, the structural responses of 12 ultra-high-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: Ultra-high-performance concrete, moment capacity, RC beams, hybrid fiber, ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47
2837 The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures

Authors: C. S. Paglia, E. Pesenti, A. Krattiger

Abstract:

Commercially available methacrylate and acrylamide-based acrylic resins for injection in concrete systems have been tested with respect to the sealing performance and the rebar corrosion. Among the different resins, a methacrylate-based type of acrylic resin significantly inhibited the rebar corrosion. This was mainly caused by the relatively high pH of the resin and the resin aqueous solution. This resin also exhibited a relatively high sealing performance, in particular after exposing the resin to durability tests. The corrosion inhibition behaviour and the sealing properties after the exposition to durability tests were maintained up to one year. The other resins either promoted the corrosion of the rebar and/or exhibited relatively low sealing properties.

Keywords: Acrylic resin, sealing performance, rebar corrosion, concrete injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
2836 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece

Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos

Abstract:

The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.

Keywords: Earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
2835 Photocatalytic Active Surface of LWSCC Architectural Concretes

Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky

Abstract:

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Keywords: Photocatalytic concretes, titanium dioxide, architectural concretes, LWSCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
2834 Roller Compacting Concrete “RCC” in Dams

Authors: Orod Zarrin, Mohsen Ramezan Shirazi

Abstract:

Rehabilitation of dam components such as foundations, buttresses, spillways and overtopping protection require a wide range of construction and design methodologies. Geotechnical Engineering considerations play an important role in the design and construction of foundations of new dams. Much investigation is required to assess and evaluate the existing dams. The application of roller compacting concrete (RCC) has been accepted as a new method for constructing new dams or rehabilitating old ones. In the past 40 years there have been so many changes in the usage of RCC and now it is one of most satisfactory solutions of water and hydropower resource throughout the world. The considerations of rehabilitation and construction of dams might differ due to upstream reservoir and its influence on penetrating and dewatering of downstream, operations requirements and plant layout. One of the advantages of RCC is its rapid placement which allows the dam to be operated quickly. Unlike ordinary concrete it is a drier mix, and stiffs enough for compacting by vibratory rollers. This paper evaluates some different aspects of RCC and focuses on its preparation progress.

Keywords: Spillway, Vibrating Consistency, Fly Ash, Water Tightness, Foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3103
2833 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete

Authors: Fatih Hattatoglu, Abdulrezzak Bakiş

Abstract:

In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.

Keywords: Rigid pavement, reactive powder concrete, combined cure, pressure test, flexural test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
2832 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: Diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
2831 Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology

Authors: M. Tazky, R. Hela, P. Novosad, L. Osuska

Abstract:

This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash.

Keywords: High-temperature fly ash, fluidised bed combustion fly ash, pozzolanic, CaO (calcium oxide), rheology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
2830 Adhesion Performance According to Lateral Reinforcement Method of Textile

Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park

Abstract:

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Keywords: Adhesion performance, lateral reinforcement, pull-out test, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
2829 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir

Abstract:

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
2828 Stability of Concrete Moment Resisting Frames in View of Current Codes Requirements

Authors: Mahmoud A. Mahmoud, Ashraf Osman

Abstract:

In this study, the different approaches currently followed by design codes to assess the stability of buildings utilizing concrete moment resisting frames structural system are evaluated. For such purpose, a parametric study was performed. It involved analyzing group of concrete moment resisting frames having different slenderness ratios (height/width ratios), designed for different lateral loads to vertical loads ratios and constructed using ordinary reinforced concrete and high strength concrete for stability check and overall buckling using code approaches and computer buckling analysis. The objectives were to examine the influence of such parameters that directly linked to frames’ lateral stiffness on the buildings’ stability and evaluates the code approach in view of buckling analysis results. Based on this study, it was concluded that, the most susceptible buildings to instability and magnification of second order effects are buildings having high aspect ratios (height/width ratio), having low lateral to vertical loads ratio and utilizing construction materials of high strength. In addition, the study showed that the instability limits imposed by codes are mainly mathematical to ensure reliable analysis not a physical ones and that they are in general conservative. Also, it has been shown that the upper limit set by one of the codes that second order moment for structural elements should be limited to 1.4 the first order moment is not justified, instead, the overall story check is more reliable.

Keywords: Buckling, lateral stability, p-delta, second order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2827 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Authors: Tomoko Fukuyama, Osamu Senbu

Abstract:

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Keywords: Prestressed concrete, electric charge, impedance, phase shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
2826 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement – Case Study

Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák

Abstract:

Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.

Keywords: Failure, pavement, probability, reliability index, simulation, tensile crack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
2825 Effect of Superplasticizer and NaOH Molarity on Workability, Compressive Strength and Microstructure Properties of Self-Compacting Geopolymer Concrete

Authors: M. Fadhil Nuruddin, Samuel Demie, M. Fareed Ahmed, Nasir Shafiq

Abstract:

The research investigates the effects of super plasticizer and molarity of sodium hydroxide alkaline solution on the workability, microstructure and compressive strength of self compacting geopolymer concrete (SCGC). SCGC is an improved way of concreting execution that does not require compaction and is made by complete elimination of ordinary Portland cement content. The parameters studied were superplasticizer (SP) dosage and molarity of NaOH solution. SCGC were synthesized from low calcium fly ash, activated by combinations of sodium hydroxide and sodium silicate solutions, and by incorporation of superplasticizer for self compactability. The workability properties such as filling ability, passing ability and resistance to segregation were assessed using slump flow, T-50, V-funnel, L-Box and J-ring test methods. It was found that the essential workability requirements for self compactability according to EFNARC were satisfied. Results showed that the workability and compressive strength improved with the increase in superplasticizer dosage. An increase in strength and a decrease in workability of these concrete samples were observed with the increase in molarity of NaOH solution from 8M to 14M. Improvement of interfacial transition zone (ITZ) and micro structure with the increase of SP and increase of concentration from 8M to 12M were also identified.

Keywords: Compressive strength, Fly ash, Geopolymer concrete, Workability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4670
2824 Utilization of Industrial Byproducts in Concrete Applications by Adopting Grey Taguchi Method for Optimization

Authors: V. K. Bansal, M. Kumar, P. P. Bansal, A. Batish

Abstract:

This paper presents the results of an experimental investigation carried out to evaluate the effects of partial replacement of cement and fine aggregate with industrial waste by-products on concrete strength properties. The Grey Taguchi approach has been used to optimize the mix proportions for desired properties. In this research work, a ternary combination of industrial waste by-products has been used. The experiments have been designed using Taguchi's L9 orthogonal array with four factors having three levels each. The cement was partially replaced by ladle furnace slag (LFS), fly ash (FA) and copper slag (CS) at 10%, 25% and 40% level and fine aggregate (sand) was partially replaced with electric arc furnace slag (EAFS), iron slag (IS) and glass powder (GP) at 20%, 30% and 40% level. Three water to binder ratios, fixed at 0.40, 0.44 and 0.48, were used, and the curing age was fixed at 7, 28 and 90 days. Thus, a series of nine experiments was conducted on the specimens for water to binder ratios of 0.40, 0.44 and 0.48 at 7, 28 and 90 days of the water curing regime. It is evident from the investigations that Grey Taguchi approach for optimization helps in identifying the factors affecting the final outcomes, i.e. compressive strength and split tensile strength of concrete. For the materials and a range of parameters used in this research, the present study has established optimum mixes in terms of strength properties. The best possible levels of mix proportions were determined for maximization through compressive and splitting tensile strength. To verify the results, the optimal mix was produced and tested. The mixture results in higher compressive strength and split tensile strength than other mixes. The compressive strength and split tensile strength of optimal mixtures are also compared with the control concrete mixtures. The results show that compressive strength and split tensile strength of concrete made with partial replacement of cement and fine aggregate is more than control concrete at all ages and w/c ratios. Based on the overall observations, it can be recommended that industrial waste by-products in ternary combinations can effectively be utilized as partial replacements of cement and fine aggregates in all concrete applications.

Keywords: Analysis of variance, ANOVA, compressive strength, concrete, grey Taguchi method, industrial by-products, split tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
2823 Assessment of Vulnerability Curves Using Vulnerability Index Method for Reinforced Concrete Structures

Authors: F. I. Belheouane, M. Bensaibi

Abstract:

The seismic feedback experiences in Algeria have shown higher percentage of damages for non-code conforming reinforced concrete (RC) buildings. Furthermore, the vulnerability of these buildings was further aggravated due to presence of many factors (e.g. weak the seismic capacity of these buildings, shorts columns, Pounding effect, etc.). Consequently Seismic risk assessments were carried out on populations of buildings to identify the buildings most likely to undergo losses during an earthquake. The results of such studies are important in the mitigation of losses under future seismic events as they allow strengthening intervention and disaster management plans to be drawn up. Within this paper, the state of the existing structures is assessed using "the vulnerability index" method. This method allows the classification of RC constructions taking into account both, structural and non structural parameters, considered to be ones of the main parameters governing the vulnerability of the structure. Based on seismic feedback from past earthquakes DPM (damage probability matrices) were developed too.

Keywords: Seismic vulnerability, Reinforced concrete buildings, Earthquake, DPM, Algeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
2822 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: A. Dulaimi, H. Al Nageim, F. Ruddock, L. Seton

Abstract:

This study aims at developing a novel cold asphalt concrete binder course mixture by using Ordinary Portland Cement (OPC) as a replacement for conventional mineral filler (0%-100%) with new by-product material (LJMU-A2) used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was assessed by measuring the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance is achieved by adding LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to a stiffness modulus after 2-day curing compared to that obtained with Portland cement, which occurs after 7-day curing.

Keywords: Binder course, cold mix asphalt, cement, stiffness modulus, water sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
2821 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure

Authors: Ye. B. Utepov, A. S. Tulebekova, A. B. Kazkeyev

Abstract:

Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it the transition boundaries form elliptical forms were determined. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in the future work.

Keywords: Heat map, placement strategy, temperature and relative humidity, wireless embedded sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312
2820 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context

Authors: Shrikant Charhate, Gayatri Deshpande

Abstract:

Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.

Keywords: Connections, geotextile, permeable ACB, pavements, stone base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
2819 Assessing the Seismic Performance of Threaded Rebar Coupler System

Authors: Do-Kyu, Hwang, Ho-Young Kim, Ho-Hyeoung Choi, Gi-Beom Park, Jae-Hoon Lee

Abstract:

Currently there are many use of threaded reinforcing bars in construction fields because those do not need additional screw processing when connecting reinforcing bar by threaded coupler. In this study, reinforced concrete bridge piers using threaded rebar coupler system at the plastic hinge area were tested to evaluate seismic performance. The test results showed that threads of the threaded rebar coupler system could be loosened while under tension-compression cyclic loading because tolerance and rib face angle of a threaded rebar coupler system are greater than that of a conventional ribbed rebar coupler system. As a result, cracks were concentrated just outside of the mechanical coupler and stiffness of reinforced concrete bridge pier decreased. Therefore, it is recommended that connection ratio of mechanical couplers in one section shall be below 50% in order that cracks are not concentrated just outside of the mechanical coupler. Also, reduced stiffness of the specimen should be considered when using the threaded rebar coupler system.

Keywords: Reinforced concrete column, seismic performance, threaded rebar coupler, threaded reinforcing bar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
2818 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls

Authors: Ali Kezmane, Said Boukais, Mohand Hamizi

Abstract:

This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.

Keywords: Shear strength, reinforced concrete walls, rectangular walls, shear walls, models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
2817 Prediction of Load Capacity of Reinforced Concrete Corbels Strengthened with CFRP Sheets

Authors: Azad A. Mohammed, Gulan B. Hassan

Abstract:

Analytical procedure was carried out in this paper to calculate the ultimate load capacity of reinforced concrete corbels strengthened or repaired externally with CFRP sheets. Strut and tie method and shear friction method proposed earlier for analyzing reinforced concrete corbels were modified to incorporate the effect of external CFRP sheets bonded to the corbel. The points of weakness of any method that lead to an inaccuracy, especially when overestimating test results were checked and discussed. Comparison of prediction with the test data indicates that the ratio of test / calculated ultimate load is 0.82 and 1.17 using strut and tie method and shear friction method, respectively. If the limits of maximum shear stress is followed, the calculated ultimate load capacity using shear friction method was found to underestimates test data considerably.

Keywords: Corbel, Strengthening, Strut and Tie Model, Shear Friction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
2816 Study on Connecting Method of Box Pontoons

Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee

Abstract:

Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.

Keywords: Connection, floating container terminal, pontoon, pre-stressing, shear key.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
2815 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam

Authors: Kalyan Kumar Mandal, Damodar Maity

Abstract:

The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.

Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
2814 Study of Debonding of Composite Material from a Deforming Concrete Beam Using Infrared Thermography

Authors: Igor Shardakov, Anton Bykov, Alexey Shestakov, Irina Glot

Abstract:

This article focuses on the cycle of experimental studies of the formation of cracks and debondings in the concrete reinforced with carbon fiber. This research was carried out in Perm National Research Polytechnic University. A series of CFRP-strengthened RC beams was tested to investigate the influence of preload and crack repairing factors on CFRP debonding. IRT was applied to detect the early stage of IC debonding during the laboratory bending tests. It was found that for the beams strengthened under load after crack injecting, СFRP debonding strain is 4-65% lower than for the preliminary strengthened beams. The beams strengthened under the load had a relative area of debonding of 2 times higher than preliminary strengthened beams. The СFRP debonding strain is weakly dependent on the strength of the concrete substrate. For beams with a transverse wrapping anchorage in support sections FRP debonding is not a failure mode.

Keywords: FRP, RC beams, strengthening, IC debonding, infrared thermography, quality control, non-destructive testing methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278