Search results for: high temperature exposure
4075 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites
Authors: Ahmed Mudhafar Hashim, Aseel Mahmood Abdullah
Abstract:
The present work introduced a green composite consisting of corn natural fiber of constant concentration of 10% by weight incorporation with poly methyl methacrylate matrix biomaterial prepared by hand lay-up technique. Corn natural fibers were treated with two concentrations of sodium hydroxide solution (3% and 5%) with different immersed time (1.5 and 3 hours) at room temperature. The fracture toughness test of untreated and alkali treated corn fiber composites were performed. The effect of chemically treated on fracture properties of composites has been analyzed using Fourier transform infrared (FTIR) spectroscopy. The experimental results showed that the alkali treatment improved the fracture properties in terms of plane strain fracture toughness KIC. It was found that the plane strain fracture toughness KIC increased by up to 62% compared to untreated fiber composites. On the other hand, increases in both concentrations of alkali solution and time of soaking to 5% NaOH and 3 hours, respectively reduced the values of KIC lower than the value of the unfilled material.
Keywords: green composites, fracture toughness, corn natural fiber, Bio-PMMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5444074 Precipitation Change and its Implication in the Change of Winter Wheat drought and Production in North China Region from 2000 to 2010
Authors: Y. Huang, Q. J. Tian, L. T. Du, J. Liu, S. S. Li
Abstract:
Understanding how precipitation inter-annually changes and its implication in agricultural drought and production change in winter wheat (Triticum aestivum L.) growth season is critical for crop production in China. MODIS Temperature-Vegetation Dryness Index (TVDI) and daily mean precipitation time series for the main growth season(Feb. to May) of winter wheat from 2000 to 2010 were used to analyze the distribution of trends of precipitation, agricultural drought and winter wheat yield change respectively, and relationships between them in North China region(Huang-huai-hai region, HHH region), China. The results indicated that the trend of precipitation in HHH region past 11 years was increasing, which had induced generally corresponding decreasing trend of agricultural drought and increasing trend of wheat yield, while the trend of drought was spatially diverse. The study could provide a basis for agricultural drought research during winter wheat season in HHH region under the ground of climate change.Keywords: drought, MODIS, precipitation change, TVDI, winter wheat production
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16544073 Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment
Authors: Gyo Woo Lee
Abstract:
In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.
Keywords: BET Specific Surface Area, Gamma-Al2O3 Nanoparticles, Flame Synthesis, Phase Transition, X-ray Diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50364072 A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G
Authors: Jyong Lin, Shih-Chang Chen, Yu-Tsen Shih, Shi-Huang Chen
Abstract:
This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to transmit the real time vehicle system status. Finally, vehicle status browser could show the remote vehicle status including vehicle speed, engine rpm, battery voltage, engine coolant temperature, and diagnostic trouble codes. According to the experimental results, the proposed system can help fleet managers and car knockers to understand the remote vehicle status. Therefore this system can decrease the time of fleet management and vehicle repair due to the fleet managers and car knockers who find the diagnostic trouble messages in time.Keywords: Diagnostic Trouble Code (DTC), Electronic Control Unit (ECU), Global Position System (GPS), On-Board Diagnostic (OBD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30174071 Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis
Authors: Shaila Ahmed, Raghu Prasad Rao Metpally, Sreedhara Sangadala, Boojala Vijay B Reddy
Abstract:
Bone growth factors, such as Bone Morphogenic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.Keywords: Transforming growth factor-beta, Bone morphogenic proteins, Noggin, LUDI de novo design method, CAP small molecules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19244070 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy
Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh
Abstract:
Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.
TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.
Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40934069 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.
Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32814068 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks
Authors: Amin Sedighfar, M. R. Moniri
Abstract:
Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate.
Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14104067 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications
Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar
Abstract:
The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.
Keywords: Aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16344066 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8044065 Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.Keywords: alcohol/ether fuel, Cu-Zn-Al-Zr slurry catalyst, global kinetics, slurry reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55274064 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise
Authors: Aïssa Rezzoug
Abstract:
This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.
Keywords: Flood, groundwater rise, Jeddah, tide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5124063 Effect of Biomass Feedstocks on the Production of Hydrogenated Biodiesel
Authors: Panatcha Bovornseripatai, Siriporn Jongpatiwut, Somchai Osuwan, Suchada Butnark
Abstract:
Hydrogenated biodiesel is one of the most promising renewable fuels. It has many advantages over conventional biodiesel, including higher cetane number, higher heating value, lower viscosity, and lower corrosiveness due to its absence of oxygen. From previous work, Pd/TiO2 gave high conversion and selectivity in hydrogenated biodiesel. In this work, the effect of biomass feedstocks (i.e. beef fat, chicken fat, pork fat, and jatropha oil) on the production of hydrogenated biodiesel over Pd/TiO2 has been studied. Biomass feedstocks were analyzed by ICP-OES (inductively coupled plasma optical emission spectrometry) to identify the content of impurities (i.e. P, K, Ca, Na, and Mg). The deoxygenation catalyst, Pd/TiO2, was prepared by incipient wetness impregnation (IWI) and tested in a continuous flow packed-bed reactor at 500 psig, 325°C, H2/feed molar ratio of 30, and LHSV of 4 h-1 for its catalytic activity and selectivity in hydrodeoxygenation. All feedstocks gave high selectivity in diesel specification range hydrocarbons and the main hydrocarbons were n-pentadecane (n-C15) and n-heptadecane (n- C17), resulting from the decarbonylation/decarboxylation reaction. Intermediates such as oleic acid, stearic acid, palmitic acid, and esters were also detected in minor amount. The conversion of triglycerides in jatropha oil is higher than those of chicken fat, pork fat, and beef fat, respectively. The higher concentration of metal impurities in feedstock, the lower conversion of feedstock.Keywords: Hydrogenated biodiesel, hydrodeoxygenation, Pd/TiO2, biomass feedstock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19764062 Very-high-Precision Normalized Eigenfunctions for a Class of Schrödinger Type Equations
Authors: Amna Noreen , Kare Olaussen
Abstract:
We demonstrate that it is possible to compute wave function normalization constants for a class of Schr¨odinger type equations by an algorithm which scales linearly (in the number of eigenfunction evaluations) with the desired precision P in decimals.
Keywords: Eigenvalue problems, bound states, trapezoidal rule, poisson resummation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28614061 Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders
Authors: Prawal Sinha, Getachew Adamu
Abstract:
Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.Keywords: Thermal Deformation, Tilted pad slider bearing, longitudinal roughness, transverse roughness, load capacity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18784060 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions
Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin
Abstract:
One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22084059 Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems
Authors: Abbas Ghanbari-Malidareh
Abstract:
Silicon is a beneficial element for plant growth. It helps plants to overcome multiple stresses, alleviates metal toxicity and improves nutrient imbalance. Field experiment was conducted as split-split plot arranged in a randomized complete block design with four replications. Irrigation system include continues flooding and deficit as main plots and nitrogen rates N0, N46, N92, and N138 kg/ha as sub plots and silicon rates Si0 & Si500 kg/ha as sub-subplots. Results indicate that grain yield had not significant difference between irrigation systems. Flooding irrigation had higher biological yield than deficit irrigation whereas, no significant difference in grain and straw yield. Nitrogen application increased grain, biological and straw yield. Silicon application increased grain, biological and straw yield but, decreased harvest index. Flooding irrigation had higher number of total tillers / hill than deficit irrigation, but deficit irrigation had higher number of fertile tillers / hill than flooding irrigation. Silicon increased number of filled spikelet and decreased blank spikelet. With high nitrogen application decreased 1000-grain weight. It can be concluded that if the nitrogen application was high and water supplied was available we could have silicon application until increase grain yield.Keywords: Grain yield, Irrigation, Nitrogen, Rice, Silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32714058 Long-Term Effect of Breastfeeding in Preschooler’s Psychomotor Development
Authors: Aurela Saliaj, Majlinda Zahaj, Bruna Pura
Abstract:
Background: Breast milk may impact early brain development, with potentially important biological, medical and social implications. There is an important discussion on which is the adequate breastfeeding extension to the development consolidation and how the children breastfeeding affects their psychomotor development, in the first year of life, and in following periods as well. Some special fats (LC PUFA) contained in breast milk play a key role in the brain’s maturation and cognitive development or social skills. These capacities created during breastfeeding time would be unfolded throughout all lifespan. Aim of the study: In our research, we have studied the effect of breastfeeding in preschooler's psychomotor assessment. Method: This study was conducted in a sample of 158 preschool children in Vlorë, Albania. We have measured the psychometric parameters of preschoolers with ASQ-3 (Age&Stage Questionnaires- 3). The studied sample was divided in three groups according to their breastfeeding duration (3, 6 and 12 months). Results: Children breastfed for only 3 months have definitely lower psychometric scores compared to the ones with 6 or more months of breastfeeding (respectively 217 to 239 ASQ-3 scores). Six and twelvemonth breastfed children have progressively more odds to have high levels of psychomotor development comparing to those with only 3 months of breastfeeding. The most affected psychometric domains by shortness of breastfeeding are Communication and Global motor. Conclusion: This leads to conclusion that to ensure high psychomotor parameters during childhood is necessary breastfeeding for at least 6 months.
Keywords: Breastfeeding, preschoolers, psycho-motor development, psycho-motor domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23554057 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.
Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18564056 Granularity Analysis for Spatio-Temporal Web Sensors
Authors: Shun Hattori
Abstract:
In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18894055 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.
Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28344054 Sulphur-Mediated Precipitation of Pt/Fe/Co/CrIons in Liquid-Liquid and Gas-Liquid Chloride Systems
Authors: J. Siame, H. Kasaini
Abstract:
The proof of concept experiments were conducted to determine the feasibility of using small amounts of Dissolved Sulphur (DS) from the gaseous phase to precipitate platinum ions in chloride media. Two sets of precipitation experiments were performed in which the source of sulphur atoms was either a thiosulphate solution (Na2S2O3) or a sulphur dioxide gas (SO2). In liquid-liquid (L-L) system, complete precipitation of Pt was achieved at small dosages of Na2S2O3 (0.01 – 1.0 M) in a time interval of 3-5 minutes. On the basis of this result, gas absorption tests were carried out mainly to achieve sulphur solubility equivalent to 0.018 M. The idea that huge amounts of precious metals could be recovered selectively from their dilute solutions by utilizing the waste SO2 streams at low pressure seemed attractive from the economic and environmental point of views. Therefore, mass transfer characteristics of SO2 gas associated with reactive absorption across the gas-liquid (G-L) interface were evaluated under different conditions of pressure (0.5 – 2 bar), solution temperature ranges from 20 – 50 oC and acid strength (1 – 4 M, HCl). This paper concludes with information about selective precipitation of Pt in the presence of cations (Fe2+, Co2+, and Cr3+) in a CSTR and recommendation to scale up laboratory data to industrial pilot scale operations.Keywords: CSTR, diffusivity, platinum, selective precipitation, sulphur dioxide, thiosulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21624053 A Software Framework for Predicting Oil-Palm Yield from Climate Data
Authors: Mohd. Noor Md. Sap, A. Majid Awan
Abstract:
Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19844052 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method
Authors: K. Machida, H. Yamada
Abstract:
Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.
Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17094051 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.
Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10514050 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis
Authors: Mustafa Jaradat
Abstract:
Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.
Keywords: Air conditioning, dehumidification, desiccant, lithium chloride, tube bundle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5854049 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.
Keywords: Applied load, forming and Mechanical Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14344048 Studying the Moisture Sources and the Stable Isotope Characteristic of Moisture in Northern Khorasan Province, North-Eastern Iran
Authors: Mojtaba Heydarizad, Hamid Ghalibaf Mohammadabadi
Abstract:
Iran is a semi-arid and arid country in south-western Asia in the Middle East facing intense climatological drought from the early times. Therefore, studying the precipitation events and the moisture sources and air masses causing precipitation has great importance in this region. In this study, the moisture sources and stable isotope content of precipitation moisture in three main events in 2015 have been studied in North-Eastern Iran. HYSPLIT model backward trajectories showed that the Caspian Sea and the mixture of the Caspian and Mediterranean Seas are dominant moisture sources for the studied events. This showed the role of cP (Siberian) and Mediterranean (MedT) air masses. Stable isotope studies showed that precipitation events originated from the Caspian Sea with lower Sea Surface Temperature (SST) have more depleted isotope values. However, precipitation events sourced from the mixture of the Caspian and the Mediterranean Seas (with higher SST) showed more enriched isotope values.
Keywords: HYSPLIT, Iran, Northern Khorasan, stable isotopes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6974047 Effect of Sensory Manipulations on Human Joint Stiffness Strategy and Its Adaptation for Human Dynamic Stability
Authors: Aizreena Azaman, Mai Ishibashi, Masanori Ishizawa, Shin-Ichiroh Yamamoto
Abstract:
Sensory input plays an important role to human posture control system to initiate strategy in order to counterpart any unbalance condition and thus, prevent fall. In previous study, joint stiffness was observed able to describe certain issues regarding to movement performance. But, correlation between balance ability and joint stiffness is still remains unknown. In this study, joint stiffening strategy at ankle and hip were observed under different sensory manipulations and its correlation with conventional clinical test (Functional Reach Test) for balance ability was investigated. In order to create unstable condition, two different surface perturbations (tilt up-tilt (TT) down and forward-backward (FB)) at four different frequencies (0.2, 0.4, 0.6 and 0.8 Hz) were introduced. Furthermore, four different sensory manipulation conditions (include vision and vestibular system) were applied to the subject and they were asked to maintain their position as possible. The results suggested that joint stiffness were high during difficult balance situation. Less balance people generated high average joint stiffness compared to balance people. Besides, adaptation of posture control system under repetitive external perturbation also suggested less during sensory limited condition. Overall, analysis of joint stiffening response possible to predict unbalance situation faced by human
Keywords: Balance ability, joint stiffness, sensory, adaptation, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19564046 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720