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Abstract—In recent years, many researches to mine the exploding
Web world, especially User Generated Content (UGC) such as
weblogs, for knowledge about various phenomena and events in
the physical world have been done actively, and also Web services
with the Web-mined knowledge have begun to be developed for
the public. However, there are few detailed investigations on how
accurately Web-mined data reflect physical-world data. It must be
problematic to idolatrously utilize the Web-mined data in public
Web services without ensuring their accuracy sufficiently. Therefore,
this paper introduces the simplest Web Sensor and spatiotemporally-
normalized Web Sensor to extract spatiotemporal data about a target
phenomenon from weblogs searched by keyword(s) representing the
target phenomenon, and tries to validate the potential and reliability
of the Web-sensed spatiotemporal data by four kinds of granularity
analyses of coefficient correlation with temperature, rainfall, snowfall,
and earthquake statistics per day by region of Japan Meteorological
Agency as physical-world data: spatial granularity (region’s popula-
tion density), temporal granularity (time period, e.g., per day vs. per
week), representation granularity (e.g., “rain” vs. “heavy rain”), and
media granularity (weblogs vs. microblogs such as Tweets).

Keywords—Granularity analysis, knowledge extraction, spatiotem-
poral data mining, Web credibility, Web mining, Web sensor.

I. INTRODUCTION

THE former Web world did not have a familiar relationship
with the physical world, and it is not too much to say that

the former Web world was isolated and independent from the
physical world. But in recent years, the explosively-growing
Web world has had more and more familiar relationships with
the physical world as the use of the World Wide Web (WWW)
on the Internet, especially User Generated Content (UGC)
such as weblogs, Word of Mouth (WOM) sites, and Social
Networking Services (SNS), has become more popular with
various people without distinction of age/sex.

Many researches to mine the exploding Web, especially the
Weblog, for knowledge about various phenomena and events
in the physical world have been done actively. For example,
opinion and reputation extraction [1, 2] of various products
and services provided in the physical world, experience mining
[3, 4] of various phenomena and events held in the physical
world, and concept hierarchy (semantics) extraction [5–10]
such as is-a/has-a relationships and visual appearance (look
and feel) extraction [9, 11–14] of physical objects in the
physical world. Meanwhile, Web services with the Web-mined
knowledge have begun to be developed for the public, and
more and more ordinary people actually utilize them as very
important information for choosing better products, services,
and actions in the physical world.
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However, there are very few detailed investigations on how
accurately Web-mined data about a phenomenon or event held
in the physical world reflect physical-world data. It is not
difficult for us to extract some kind of the potential knowledge
data from the Web by using various text mining techniques,
and it might be not problematic just to enjoy browsing them.
But while choosing better products, services, and actions in the
physical world, it must be problematic to idolatrously utilize
the Web-mined data in public Web services without ensuring
their accuracy sufficiently.

This paper introduces the concept of Web Sensors [15–18],
the simplest/spatiotemporally-normalized ones, to extract spa-
tiotemporal data about such a target phenomenon as tempera-
ture, rainfall, snowfall, and earthquake from Web documents
searched by keyword(s) representing the target phenomenon,
and carries out 4 kinds of granularity analyses of coefficient
correlation with 4 kinds of physical-world statistics per day by
region of Japan Meteorological Agency (JMA) [19] to validate
the potential and reliability of the Web-sensed spatiotemporal
data for such a space as 47 prefectures and 47 prefectural
capitals in Japan and such a time period as a day and a week
in 2011. The four kinds of granularity analyses include

• Space Granularity Analysis: analyzes the spatial de-
pendency of coefficient correlation between Web-sensed
spatiotemporal data and JMA’s stats on space’s population
density. The other examples of spatial features include
population, land area, and geographic location.

• Time Granularity Analysis: analyzes the temporal de-
pendency of coefficient correlation between Web-sensed
spatiotemporal data and JMA’s stats on time’s period, e.g.,
per day vs. per week.

• Representation Granularity Analysis: analyzes the hy-
ponymy dependency of coefficient correlation between
Web-sensed spatiotemporal data and JMA’s stats on a
coarse keyword (“rain”) vs. a fine keyword (“heavy rain”)
representing a target phenomenon (e.g., rainfall).

• Media Granularity Analysis: analyzes the media de-
pendency of coefficient correlation between Web-sensed
spatiotemporal data and JMA’s stats on weblogs vs.
microblogs such as Tweets. The number of Weblog
documents is about 50 times more than the number of
Twitter (as one of microblogging sites) documents in
2011. And Tweets are restricted up to 140 characters.

The remainder of this paper is organized as follows. Section
II introduces the simplest Web Sensor and spatiotemporally-
normalized Web Sensor in Secure Spaces. Section III validates
the potential and reliability of the Web-sensed spatiotemporal
data by granularity analyses. Section IV concludes this paper.
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II. METHOD: WEB SENSORS IN SECURE SPACES

In public spaces, there are a number of different con-
tents such as visitors, and physical information resources,
and virtual information resources via their embedded output
devices. Therefore, we might unexpectedly enter the public
spaces that have our unauthorized contents and/or unwanted
characteristics, i.e., they are convenient and comfortable for
somebody but not always secure and safe for all of us. To solve
this problem, my previous works [15, 20–23] have introduced
the concept of Secure Spaces, physical environments in which
any visitor is protected from being pushed her unwanted
information resources on and also any information resource
is always protected from being accessed by its unauthorized
visitors, and the model and architecture for space entry control
and information access control based on their dynamically
changing contents.

To build Secure Spaces in the physical world by using space
entry control based on their dynamically changing contents
such as their visitors, physical/virtual information resources
via their embedded output devices, each Secure Space requires
the following facilities (as shown in Fig. 1).

• Space Management: is responsible for managing a Se-
cure Space, i.e., for constantly figuring out its contents
such as its visitors, its embedded physical information
resources and virtual information resources outputted via
its embedded output devices and also for ad-hoc making
an authorization decision on whether an entry request to
enter the Secure Space by a visitor or a physical/virtual
information resource should be granted or denied, and for
notifying the entry decisions to the Electrically Lockable
Doors or enforcing entry control over virtual information
resources according to the entry decisions by itself.

• User/Object Authentication: is responsible for authen-
ticating what physical entity such as a user or a physical
information resource requests to enter or exit the Secure
Space (e.g., by using Radio Frequency IDentification or
biometrics technologies) and also for notifying it to the
Space Management.

• Electrically Lockable Door: is responsible for elec-
trically locking or unlocking itself, i.e., for assuredly
enforcing entry control over physical entities such as
users and physical information resources, according to
instructions by the Space Management.

• Physically Isolating Opaque Wall: is responsible for
physically isolating inside a Secure Space from outside
there with regard to information access, i.e., for validating
the basic assumption that any user inside a Secure Space
can access any resource inside the Secure Space while
any user outside the Secure Space can never any resource
inside the Secure Space.

To protect us from our unwanted characteristics (e.g., de-
grees of congestion, dismal, and danger) of physical spaces
as well as our unauthorized contents, the following additional
facilities are required.

• Real Sensor: is responsible for physically sensing inside
a Secure Space for its physical characteristics to make
access decisions in the Secure Space and also for notify-

ing the sensor data stream to the Space Management. For
example, thermometers, hygrometers, (security) cameras.

• Web Sensor: is responsible for logically sensing the
Weblog for the approximate characteristics of each Secure
Space to make access decisions in the Secure Space
and also for notifying the Web-mined data to the Space
Management. Note that any Secure Space does not have
to equip the extra devices unlike Real Sensors.

This paper introduces two kinds of Web Sensors from
my previous works [15–18], the simplest Web Sensor and
spatiotemporally-normalized Web Sensor, to extract spatiotem-
poral data about such a target phenomenon as tempera-
ture, rainfall, snowfall, and earthquake from Web documents
searched by keyword(s) representing the target phenomenon.

First, the simplest Web Sensor with a geographic space s,
e.g., one of 47 prefectures such as “ ” (Hokkaido) and
47 prefectural capitals such as “ ” (Sapporo City), a time
period t, e.g., per day and per week in 2011, and a Japanese
keyword kw representing a target phenomenon in the physical
world, e.g., “ ” (hot for temperature), “ ” (rain), “ ”
(snow), and “ ” (earthquake), by analyzing a corpus c of
Web documents, the Weblog or Twitter (one of microblogging
sites), is defined as

wsc
0(kw, s, t) := dfct(["kw" & "s"]), (1)

where dfct([q]) stands for the Frequency of Web Documents
searched from the corpus c by submitting the search query q
with the custom time range t to Google Web Search [24], and
& stands for an AND operator.

Next, the spatiotemporally-normalized Web Sensor by the
frequency dfct(["s"]) of Web documents from the corpus c
by submitting the geographical space s with the custom time
range t to Google Web Search to clean up spatio-temporal
dependency is defined as

wsc
1(kw, s, t) := wsc

0(kw, s, t) / dfct(["s"]). (2)

Users
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Fig. 1 Spatio-temporal Web Sensors in Secure Spaces
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III. EXPERIMENT: GRANULARITY ANALYSES

This section carries out 4 kinds of granularity analyses of
coefficient correlation with 4 kinds of physical-world statistics
per day by region of Japan Meteorological Agency (JMA)
[19] to validate the potential and reliability of the Web-sensed
spatiotemporal data for such a space as 47 prefectures and 47
prefectural capitals in Japan and such a time period as a day
and a week in 2011. Fig. 2 shows various different features
of the four kinds of target phenomena in the physical world.

1) Temperature: changes slowly in all seasons.
2) Rainfall: has spikes in any seasons.
3) Snowfall: has spikes in only winter season.
4) Earthquake: has sharper spikes anytime potentially.

Fig. 2(4) shows that the Web Sensor can sense the sharpest
spike caused by the Great East Japan Earthquake (M9.0)
on March 11th, 2011, but cannot acutely sense the 2nd
sharpest spike caused by the earthquake (M5.1) in Hokkaido
on September 7th, 2011, and that for a while after the Great
East Japan Earthquake, its very huge effects decreasingly keep
on the Web Sensor as well as the physical world.

Fig. 3 to 6 show the granularity analyses of coefficient
correlation between the simplest Web Sensor’s spatiotemporal
data and JMA’s average temperature, rainfall amount, snowfall
amount, and number of felt quakes, respectively.

A. Space Granularity Analysis

The right columns of 4 figures (pages) analyze the spatial
dependency of coefficient correlation between Web-sensed
spatiotemporal data and JMA’s stats on space’s population
density. The smaller the space s is, the larger the deviation
of coefficient correlation in the space is.

B. Time Granularity Analysis

The left columns of 4 figures (pages) analyze the temporal
dependency of coefficient correlation between Web-sensed
spatiotemporal data and JMA’s stats on time’s period. The
larger the time period t is, the larger the average, maximum,
and deviation of coefficient correlation in the time period are.

C. Representation Granularity Analysis

The (a) vs. (b) and (c) vs. (d) of 3 figures except Fig. 3
analyze the hyponymy dependency of coefficient correlation
between Web-sensed spatiotemporal data and JMA’s stats on a
coarse keyword (e.g., “rain”) vs. a fine keyword (e.g., “heavy
rain”) representing a target phenomenon (e.g., rainfall). The
finer the keyword kw representing a target phenomenon is,
the larger the average and maximum of coefficient correlation
by Web Sensors with the keyword are.

D. Media Granularity Analysis

The (a) vs. (c) and (b) vs. (d) of 4 figures (pages) analyze
the media dependency of coefficient correlation between Web-
sensed spatiotemporal data and JMA’s stats on weblogs vs.
microblogs such as Tweets. Weblog documents tend to be
superior to Twitter (microblog) documents for Web Sensors to
extract spatiotemporal data about physical-world phenomena
from the Web.
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Fig. 2 JMA’s daily statistics and Web Sensor’s spatiotemporal data for
four physical-world phenomena in Hokkaido prefecture, 2011
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(b) using Blog documents searched by a negative keyword kw = “ ” (cold)
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(c) using Twitter (Microblog) documents searched by a positive keyword kw = “ ” (hot)
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(d) using Twitter (Microblog) documents searched by a negative keyword kw = “ ” (cold)

Fig. 3 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s average temperature
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(a) using Blog documents searched by a coarse keyword kw = “ ” (rain)
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(b) using Blog documents searched by a fine keyword kw = “ ” (heavy rain)
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(c) using Twitter (Microblog) documents searched by a coarse keyword kw = “ ” (rain)
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(d) using Twitter (Microblog) documents searched by a fine keyword kw = “ ” (heavy rain)

Fig. 4 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s rainfall amount
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(a) using Blog documents searched by a coarse keyword kw = “ ” (snow)
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(b) using Blog documents searched by a fine keyword kw = “ ” (heavy snow)
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(c) using Twitter (Microblog) documents searched by a coarse keyword kw = “ ” (snow)
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Fig. 5 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s snowfall amount
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(a) using Blog documents searched by a coarse keyword kw = “ ” (earthquake)
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(d) using Twitter (Microblog) documents searched by a fine keyword kw = “ ” (huge earthquake)

Fig. 6 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s number of felt earthquakes
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Fig. 7 compares the simplest and spatiotemporally-
normalized Web Sensors with weblogs for four physical-world
phenomena by Time and Representation granularity analyses.
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Fig. 7 Comparison of simple and normalized Web Sensors

It shows that the spatiotemporally-normalized Web Sensor is
slightly superior to the simplest Web Sensor, and that both
Web Sensors give better performance for a longer (coarser)
time period and/or with a finer keyword. And it also shows
that spatio-temporal Web Sensors indicate periodically for
number of felt earthquakes, but increase gradually for the other
physical-world phenomena.

Fig. 8 and 9 show the spatial distribution (on 47 prefectures
in Japan) of coefficient correlation between Web Sensor’s
spatiotemporal data and JMA’s daily statistics for rainfall
amount and number of felt earthquakes, respectively. They
show that the spatial distribution for rainfall amount is more
uniform than for number of felt earthquakes, and that the
farther the space (prefecture) is from the Great East Japan
Earthquake on March 11th, 2011 (or the less felt earthquakes
the space has), the lower the coefficient correlation between
Web Sensor’s spatiotemporal data and JMA’s daily earthquake
stats for the space is.

Coefficient Correlation
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Fig. 8 Spatial distribution of coefficient correlation between Web Sensor’s
spatiotemporal data and JMA’s daily rainfall statistics
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Fig. 9 Spatial distribution of coefficient correlation between Web Sensor’s
spatiotemporal data and JMA’s daily earthquake statistics
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IV. CONCLUSION

This paper has introduced the simplest Web Sensor and
spatiotemporally-normalized Web Sensor to extract spatiotem-
poral data about a target phenomenon in the physical world
from Weblog documents searched by keyword(s) represent-
ing the target phenomenon. And also this paper has tried
to validate the potential and reliability of the Web-sensed
spatiotemporal data by carrying out 4 kinds of granularity
analyses of coefficient correlation with temperature, rainfall,
snowfall, and earthquake statistics per day by region of Japan
Meteorological Agency (JMA) as physical-world data:

• Spatial granularity analysis (region’s population density),
• Temporal granularity analysis (time period, e.g., per day

vs. per week vs. per month),
• Representation granularity analysis (e.g., a coarse key-

word “rain” vs. a fine keyword “heavy rain”), and
• Media granularity analysis (weblogs vs. microblogs such

as Tweets).
The four kinds of granularity analyses conclude that

• The smaller the space is, the larger the deviation of
coefficient correlation in the space is,

• The larger the time period is, the larger the average,
maximum, and deviation of coefficient correlation in the
time period are,

• The finer the keyword representing a target phenomenon
is, the larger the average and maximum of coefficient
correlation by Web Sensors with the keyword are, and

• Weblog documents tend to be superior to microblog
documents for Web Sensors to extract spatiotemporal data
about physical-world phenomena from the Web.
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