Search results for: Thermal Energy and Power Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6764

Search results for: Thermal Energy and Power Engineering

3104 High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures

Authors: Ramin Yousefi, Muhamad. Rasat. Muhamad

Abstract:

We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.

Keywords: ZnO nano and microstructures, Photoluminescence, Raman, Rectifying behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
3103 CO2 Sequestration Potential of Construction and Demolition Alkaline Waste Material in Indian Perspective

Authors: G.Anjali, M.Bhavya, N.Arvind Kumar

Abstract:

In order to avoid the potentially devastating consequences of global warming and climate change, the carbon dioxide “CO2" emissions caused due to anthropogenic activities must be reduced considerably. This paper presents the first study examining the feasibility of carbon sequestration in construction and demolition “C&D" waste. Experiments were carried out in a self fabricated Batch Reactor at 40ºC, relative humidity of 50-70%, and flow rate of CO2 at 10L/min for 1 hour for water-to-solids ratio of 0.2 to 1.2. The effect of surface area was found by comparing the theoretical extent of carbonation of two different sieve sizes (0.3mm and 2.36mm) of C&D waste. A 38.44% of the theoretical extent of carbonation equating to 4% CO2 sequestration extent was obtained for C&D waste sample for 0.3mm sieve size. Qualitative, quantitative and morphological analyses were done to validate carbonate formation using X-ray diffraction “X.R.D.," thermal gravimetric analysis “T.G.A., “X-Ray Fluorescence Spectroscopy “X.R.F.," and scanning electron microscopy “S.E.M".

Keywords: Alkaline waste, construction and demolition waste, CO2 sequestration, mineral carbonation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
3102 Analysis on Influence of Gravity on Convection Heat Transfer in Manned Spacecraft during Terrestrial Test

Authors: Wang Jing, Tao Tao, Li Xiyuan, Pei Yifei

Abstract:

How to simulate experimentally the air flow and heat transfer under microgravity on the ground is important, which has not been completely solved so far. Influence of gravity on air natural convection results in convection heat transfer on ground difference from that on orbit. In order to obtain air temperature and velocity deviations of manned spacecraft during terrestrial thermal test, dimensionless number analysis and numerical simulation analysis are performed. The calculated temperature distribution and velocity distribution of the horizontal test cases are compared to the vertical cases. The results show that the influence of gravity is neglected for facility drawer racks and more obvious for vertical cabins.

Keywords: Gravity, Convection heat transfer, Manned spacecraft, Dimensionless number, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
3101 Hydrated Magnesium Borate Synthesis from MgCl2.6H2O at 80oC by Hydrothermal Method

Authors: A. S. Kipcak, P. Gurses, E. Moroydor Derun, S. Piskin

Abstract:

Borate minerals have attracted considerable attention in the past years due to their structural chemistry and mechanical properties in several industries. Recently, increasing attention has been paid to the use of; synthetically produced magnesium borates as catalysts reinforcing material for plastics, the conversion of hydrocarbons, electro-conductive treating agent, anti-wear and anti-corrosion materials. Magnesium borates can be synthesized by several methods such as; hydrothermal and solid-state (thermal) processes. In this study the hydrothermal production method was applied at the modest temperature of 80C along with convenient crystal growth. Using MgCl2.6H2O, H3BO3, and NaOH as starting materials, 30, 60, 120, 240 minutes of reaction times were studied. After all, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result the forms of Admontite and Mcallisterite minerals were synthesized.

Keywords: FT-IR, hydrothermal method, magnesium borates, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659
3100 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: Clustering coefficient, preferential attachment, small world, Web community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
3099 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: Annular fins, condenser heat transfer coefficient, heat pipe, natural convection, tilt angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
3098 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Authors: Mohamed Omar

Abstract:

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
3097 The Ombudsman: Different Terminologies Same Missions

Authors: Khodr Fakih

Abstract:

The Ombudsman is a procedural mechanism that provides a different approach of dispute resolution. The ombudsman primarily deals with specific grievances from the public against governmental injustice and misconduct. The ombudsman theory is considered an important instrument to any democratic government. This is true since it improves the transparency of the governmental activities in a world in which executive power are rising. Many countries have adopted the concept of Ombudsman but under different terminologies. This paper will provide the different types of Ombudsman and the common activities/processes of fulfilling their mandates.

Keywords: Administration, Citizens, Government, Mediator, Ombudsman, Presidential Mediator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
3096 Characterization of InGaAsP/InP Quantum Well Lasers

Authors: K. Melouk, M. Dellakrachai

Abstract:

Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.

Keywords: Laser, quantum well, semiconductor, InGaAsP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
3095 Phase Transition and Molecular Polarizability Studies in Liquid Crystalline Mixtures

Authors: M. Shahina, K. Fakruddin, C. M. Subhan, S. Rangappa

Abstract:

In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott δ function model. The results reveal that the polarizability values are same in both experimental and theoretical methods.

Keywords: Liquid crystals, optical textures, transition temperature, birefringence, polarizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
3094 Graft Copolymerization of Methyl Methacrylate onto Cellulose in Homogeneous Medium – Effect of Solvent and Initiator

Authors: B. Tosh, C. R. Routray

Abstract:

Homogeneous graft copolymerization of methyl methacrylate (MMA) onto cellulose was carried out in N, N – dimethyl acetamide/LiCl (DMAc/LiCl) and dimethyl sulfoxide/ paraformaldehyde (DMSO/PF) solvent system taking ceric ammonium nitrate (CAN), benzoyl peroxide (BPO) and tin (II)-2-ethyl hexanoate [Sn(Oct)2] as initiators. Different grafting parameters like graft yield (GY), grafting efficiency (GE) and total conversion of monomer to polymer (TC) were evaluated at different reaction conditions of temperature, time, and variation of the amount of monomer and initiator. The viscosity average molecular weight of grafted PMMA and number of grafts per cellulose chain were also calculated. The products were characterized by FT-IR and 1H-NMR analyses and possible reaction mechanisms were deduced. Thermal degradation of the grafted products was also studied by thermo-gravimetric analysis (TG) and differential thermo-gravimetry (DTG).

Keywords: Grafting, grafting efficiency, homogeneous medium, methyl methacrylate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3159
3093 Thermoelectric Properties of Doped Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.

Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
3092 Temperature Effect on the Solid-State Synthesis of Dehydrated Zinc Borates

Authors: N. Tugrul, N. Baran Acarali, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Turkey has 72 % of total world boron reserves on the basis of B2O3.Borates that is a refined form of boron minerals have a wide range of applications. Zinc borates can be used as multifunctional synergistic additives. The most important properties are low solubility in water and high dehydration temperature. Zinc borates dehydrate above 290°C and anhydrous zinc borate has thermal resistance about 400°C. Zinc borates can be synthesized using several methods such as hydrothermal and solid-state processes. In this study, the solid-state method was applied between 500 and 800°C using the starting materials of ZnO and H3BO3 with 1:4 mole ratio. The reaction time was determined as 4 hours after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by XRay Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectrometer. As a result the form of ZnB4O7 was synthesized with the highest crystal score at 800°C.

Keywords: Raman, solid-state method, zinc borate, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
3091 Conversion of Modified Commercial Polyacrylonitrile Fibers to Carbon Fibers

Authors: R. Eslami Farsani, A. Shokuhfar, A. Sedghi

Abstract:

Carbon fibers are fabricated from different materials, such as special polyacrylonitrile (PAN) fibers, rayon fibers and pitch. Among these three groups of materials, PAN fibers are the most widely used precursor for the manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers includes two steps; oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Due to the high price of raw materials (special PAN fibers), carbon fibers are still expensive. In the present work the main goal is making carbon fibers from low price commercial PAN fibers with modified chemical compositions. The results show that in case of conducting completes stabilization process, it is possible to produce carbon fibers with desirable tensile strength from this type of PAN fibers. To this matter, thermal characteristics of commercial PAN fibers were investigated and based upon the obtained results, with some changes in conventional procedure of stabilization in terms of temperature and time variables; the desirable conditions of complete stabilization is achieved.

Keywords: Modified Commercial PAN Fibers, Stabilization, Carbonization, Carbon Fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895
3090 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho

Abstract:

The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.

Keywords: Matrix cooling, rib, heat transfer, gas turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
3089 Full Potential Study of Electronic and Optical Properties of NdF3

Authors: Sapan Mohan Saini

Abstract:

We report the electronic structure and optical properties of NdF3 compound. Our calculations are based on density functional theory (DFT) using the full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA, and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for NdF3 compound stays low till 7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.

Keywords: FPLAPW Method, optical properties, rare earthtrifluorides LSDA+U

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
3088 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
3087 A Novel Logarithmic Current-Controlled Current Amplifier (LCCA)

Authors: Karama M. AL-Tamimi, Munir A. Al-Absi

Abstract:

A new OTA-based logarithmic-control variable gain current amplifier (LCCA) is presented. It consists of two Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The circuit operates from 0.6V DC power supply and consumes 0.6 μW. The linear-dB controllable output range is 43 dB with maximum error less than 0.5dB. The functionality of the proposed design was confirmed using HSPICE in 0.35μm CMOS process technology.

Keywords: LCCA, OTA, Logarithmic, VGA, Weak inversion, Current-mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
3086 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Wastewater: A Study of Techno-Economics, Energy Use and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates is an interesting substitute for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: Circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4159
3085 Low-Cost Pre-Treatment of Pharmaceutical Wastewater

Authors: A. Abu-Safa, S. Abu-Salah, M. Mosa, S. Gharaibeh

Abstract:

Pharmaceutical industries and effluents of sewage treatment plants are the main sources of residual pharmaceuticals in water resources. These emergent pollutants may adversely impact the biophysical environment. Pharmaceutical industries often generate wastewater that changes in characteristics and quantity depending on the used manufacturing processes. Carbamazepine (CBZ), {5Hdibenzo [b,f]azepine-5-carboxamide, (C15H12N2O)}, is a significant non-biodegradable pharmaceutical contaminant in the Jordanian pharmaceutical wastewater, which is not removed by the activated sludge processes in treatment plants. Activated carbon may potentially remove that pollutant from effluents, but the high cost involved suggests that more attention should be given to the potential use of low-cost materials in order to reduce cost and environmental contamination. Powders of Jordanian non-metallic raw materials namely, Azraq Bentonite (AB), Kaolinite (K), and Zeolite (Zeo) were activated (acid and thermal treatment) and evaluated by removing CBZ. The results of batch and column techniques experiments showed around 46% and 67% removal of CBZ respectively.

Keywords: Azraq bentonite, carbamazepine, pharmaceutical wastewater, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
3084 Negative Temperature Dependence of a Gravity - A Reality

Authors: Alexander L. Dmitriev, Sophia A. Bulgakova

Abstract:

Temperature dependence of force of gravitation is one of the fundamental problems of physics. This problem has got special value in connection with that the general theory of relativity, supposing the weakest positive influence of a body temperature on its weight, actually rejects an opportunity of measurement of negative influence of temperature on gravity in laboratory conditions. Really, the recognition of negative temperature dependence of gravitation, for example, means basic impossibility of achievement of a singularity («a black hole») at a gravitational collapse. Laboratory experiments with exact weighing the heated up metal samples, indicating negative influence temperatures of bodies on their physical weight are described. Influence of mistakes of measurements is analyzed. Calculations of distribution of temperature in volume of the bar, agreed with experimental data of time dependence of weight of samples are executed. The physical substantiation of negative temperature dependence of weight of the bodies, based on correlation of acceleration at thermal movement of micro-particles of a body and its absolute temperature, are given.

Keywords: Gravitation, temperature, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
3083 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2971
3082 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: Supply chain management, green supply chain, green design, green manufacturing, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
3081 Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

Authors: Hossein Shokouhmand , Koohyar Vahidkhah, Mohammad A. Esmaeili

Abstract:

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Keywords: dimple, heat transfer enhancement, Numerical, optimum value, turbulent air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
3080 Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

Authors: S. Jungsuttiwong, R. Tarsang, S. Pansay, T. Yakhantip, V. Promarak, T. Sudyoadsuk, T. Kaewin, S. Saengsuwan, S. Namuangrak

Abstract:

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).

Keywords: Dye-Sensitized Solar cell, Carbarzole, TD-DFT, D-D-π-A organic dye

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5138
3079 Analysis of Boiling in Rectangular Micro Channel Heat Sink

Authors: Ahmed Jassim Shkarah, Mohd Yusoff Bin Sulaiman, Md Razali bin Hj Ayob

Abstract:

A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing Tow-phase flows. The sole purpose for analyzing two phase flow heat transfer in rectangular micro channel is to pin point what are the different factors affecting this phenomenon. Different methods and techniques have been undertaken to analyze the equations arising constituting the flow of heat from gas phase to liquid phase and vice versa.Different models of micro channels have been identified and analyzed. How the geometry of micro channels affects their activity i.e. of circular and non-circular geometry has also been reviewed. To the study the results average Nusselt no plotted against the Reynolds no has been taken into consideration to study average heat exchange in micro channels against applied heat flux. High heat fluxes up to 140 W/cm2 were applied to investigate micro-channel thermal characteristics.

Keywords: Tow Phase flow, Micro channel, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
3078 Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL)

Authors: A. Buasri, N. Chaiyut, K. Iamma, K. Kongcharoen, K. Cheunsakulpong

Abstract:

Biopolymers have gained much attention as ecofriendly alternatives to petrochemical-based plastics because they are biodegradable and can be produced from renewable feedstocks. One class of biopolyester with many potential environmentally friendly applications is polylactic acid (PLA) and polycaprolactone (PCL). The PLA/PCL biodegradable copolyesters were synthesized by bulk ring-opening copolymerization of successively added Llactide (LL) and ε-caprolactone (CL) in the presence of toluene, using 1-hexanol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Reaction temperature, reaction time and amount of catalyst were evaluated to obtain optimum reaction conditions. The results showed that the %conversion increased with increases in reaction temperature and reaction time, but after a critical amount of catalyst was reached the %conversion decreased. The yield of PLA/PCL biopolymer achieved 98.02% at the reaction temperature 160 °C, amount of catalyst 0.3 mol% and reaction time of 48 h. In addition, the thermal properties of the product were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

Keywords: Biopolymer, Polylactic Acid (PLA), Polycaprolactone (PCL), L-Lactide (LL), ε-Caprolactone (CL)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4486
3077 Improvement in Silicon on Insulator Devices using Strained Si/SiGe Technology for High Performance in RF Integrated Circuits

Authors: Morteza Fathipour, Samira Omidbakhsh, Kimia Khodayari

Abstract:

RF performance of SOI CMOS device has attracted significant amount of interest recently. In order to improve RF parameters, Strained Si/Relaxed Si0.8Ge0.2 investigated as a replacement for Si technology .Enhancement of carrier mobility associated with strain engineering makes Strained Si a promising candidate for improving RF performance of CMOS technology. From the simulation, the cut-off frequency is estimated to be 224 GHZ, whereas in SOI at similar bias is about 188 GHZ. Therefore, Strained Si exhibits 19% improvement in cut-off frequency over similar Si counterpart. In this paper, Ion/Ioff ratio is studied as one of the key parameters in logic and digital application. Strained Si/SiGe demonstrates better Ion/Ioff characteristic than SOI, in similar channel length of 100 nm.Another important key analog figures of merit such as Early Voltage (VEA) ,transconductance vs drain current (gm /Ids) are studied. They introduce the efficiency of the devices to convert dc power into ac frequency.

Keywords: cut-off frequency, RF application, Silicon oninsulator, Strained Si/SiGe on insulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
3076 An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

Authors: M.kayhani, M.Nourouzi, A. Amiri Delooei

Abstract:

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Keywords: exact solution, composite laminate, heat conduction, cylinder, Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
3075 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures

Authors: Samir Al-Zobaidi

Abstract:

This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100oC. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.

Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694