Probabilistic Graphical Model for the Web
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: Clustering coefficient, preferential attachment, small world, Web community.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1097116

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602

References:


[1] P. Baldi, P.Frasconi and P.Smyth, “Modeling the Internet and the web, Probabilistic Methods and Algorithms,” John Wiley and Sons, Ltd, Chichester, West Sussex, England, 2003.
[2] A.L. Barabasi, R. Albert, “Emergence of scaling in random networks,” Science 286, 1999, pp.509–512.
[3] A.L. Barabasi, R. Albert, H. Jeong and G. Bianconi, “Power-law distribution of the World Wide Web,” Science 287(2115), 2000.
[4] A. Broder, F. Kumer, S. Rajagopalan et all, “Graph structure in the Web,” Computer Networks 33, 2000, pp.309–320.
[5] A. Bonato, “A survey of models of the web graph,” Proceedings of Combinatorial and Algorithmic Aspects of Networking, 2004.
[6] J.L. Guillaume, M. Latapy, “Topologie d’Internet et de Web: mesure et modélisation,” Actes du premier colloque Mesures de l’Internet, Nice, France, 2003.
[7] J.L. Guillaume, “Analyse statistique et modélisation des grands réseaux” PhD Thesis, Paris 7 university, France, 2004.
[8] M. Lyckova, I. Charon, L. et all. (2005), “Rapport sur le projet WEBMOPT Optimisation et modélisation du graphe du Web,” Département Informatique et réseaux. Groupe Mathématiques de l’Informatique et des réseaux.
[9] P.Pons, “Détection de communautés dans les grands graphes de terrain, ”PhD Thesis, Paris 7 university, France, 2007.
[10] D. Watts and S. Strogatz “Collective Dynamics of Small-World Networks,” Nature 393, 1998, pp 440-442.