%0 Journal Article
	%A Mohamed Omar
	%D 2011
	%J International Journal of Computer and Systems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 59, 2011
	%T Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy
	%U https://publications.waset.org/pdf/15878
	%V 59
	%X Superelastic Shape Memory Alloy (SMA) is accepted
when it used as connection in steel structures. The seismic behaviour
of steel frames with SMA is being assessed in this study. Three eightstorey
steel frames with different SMA systems are suggested, the
first one of which is braced with diagonal bracing system, the second
one is braced with nee bracing system while the last one is which the
SMA is used as connection at the plastic hinge regions of beams.
Nonlinear time history analyses of steel frames with SMA subjected
to two different ground motion records have been performed using
Seismostruct software. To evaluate the efficiency of suggested
systems, the dynamic responses of the frames were compared. From
the comparison results, it can be concluded that using SMA element
is an effective way to improve the dynamic response of structures
subjected to earthquake excitations. Implementing the SMA braces
can lead to a reduction in residual roof displacement. The shape
memory alloy is effective in reducing the maximum displacement at
the frame top and it provides a large elastic deformation range. SMA
connections are very effective in dissipating energy and reducing the
total input energy of the whole frame under severe seismic ground
motion. Using of the SMA connection system is more effective in
controlling the reaction forces at the base frame than other bracing
systems. Using SMA as bracing is more effective in reducing the
displacements. The efficiency of SMA is dependant on the input
wave motions and the construction system as well.
	%P 675 - 683