Search results for: Singular integral equation.
1175 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3631174 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters
Authors: Hongji Tang, Yanbo Gao, Yue Yu
Abstract:
This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.
Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20241173 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions
Authors: I. Otete, A. I. Ejere, I. S. Okunzuwa
Abstract:
In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.
Keywords: Schrödinger's equation, bound state, Hulthen-Yukawa potential, Nikiforov-Uvarov, D-dimensions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4531172 An Efficient Method for Solving Multipoint Equation Boundary Value Problems
Authors: Ampon Dhamacharoen, Kanittha Chompuvised
Abstract:
In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861171 Dynamic Analysis by a Family of Time Marching Procedures Based On Numerically Computed Green’s Functions
Authors: Delfim Soares Jr.
Abstract:
In this work, a new family of time marching procedures based on Green’s function matrices is presented. The formulation is based on the development of new recurrence relationships, which employ time integral terms to treat initial condition values. These integral terms are numerically evaluated taking into account Newton-Cotes formulas. The Green’s matrices of the model are also numerically computed, taking into account the generalized-α method and subcycling techniques. As it is discussed and illustrated along the text, the proposed procedure is efficient and accurate, providing a very attractive time marching technique.
Keywords: Dynamics, Time-Marching, Green’s Function, Generalized-α Method, Subcycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151170 On the Fuzzy Difference Equation xn+1 = A +
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao,
Abstract:
In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.
Keywords: Fuzzy difference equation, boundedness, persistence, equilibrium point, asymptotic behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161169 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101168 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981167 Reduction in Population Growth under Various Contraceptive Strategies in Uttar Pradesh, India
Authors: Prashant Verma, K. K. Singh, Anjali Singh, Ujjaval Srivastava
Abstract:
Contraceptive policies have been derived to achieve desired reductions in the growth rate and also, applied to the data of Uttar-Pradesh, India for illustration. Using the Lotka’s integral equation for the stable population, expressions for the proportion of contraceptive users at different ages have been obtained. At the age of 20 years, 42% of contraceptive users is imperative to reduce the present annual growth rate of 0.036 to 0.02, assuming that 40% of the contraceptive users discontinue at the age of 25 years and 30% again continue contraceptive use at age 30 years. Further, presuming that 75% of women start using contraceptives at the age of 23 years, and 50% of the remaining women start using contraceptives at the age of 28 years, while the rest of them start using it at the age of 32 years. If we set a minimum age of marriage as 20 years, a reduction of 0.019 in growth rate will be obtained. This study describes how the level of contraceptive use at different age groups of women reduces the growth rate in the state of Uttar Pradesh. The article also promotes delayed marriage in the region.
Keywords: Child bearing, contraceptive devices, contraceptive policies, population growth, stable population.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6501166 Siding Mode Control of Pitch-Rate of an F-16 Aircraft
Authors: Ekprasit Promtun, Sridhar Seshagiri
Abstract:
This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32211165 The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation
Authors: Chuanjian Wang, Changfu Liu, Zhengde Dai
Abstract:
In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.
Keywords: EKdV equation, Breather, Soliton, Bilinear form, The direct AnsAz method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781164 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field
Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand
Abstract:
The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11711163 Periodic Solutions for a Third-order p-Laplacian Functional Differential Equation
Authors: Yanling Zhu, Kai Wang
Abstract:
By means of Mawhin’s continuation theorem, we study a kind of third-order p-Laplacian functional differential equation with distributed delay in the form: ϕp(x (t)) = g t, 0 −τ x(t + s) dα(s) + e(t), some criteria to guarantee the existence of periodic solutions are obtained.
Keywords: p–Laplacian, distributed delay, periodic solution, Mawhin's continuation theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12891162 Nonlinear Effects in Bubbly Liquid with Shock Waves
Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Uliana O. Agisheva, Valeria A. Buzina
Abstract:
The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.Keywords: bubbly liquid, cavitation, equation of state, shock wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931161 An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method
Authors: Nopparat Pochai, Rujira Deepana
Abstract:
Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.Keywords: Finite difference, One-dimensional, Steady state, Waterpollution control, Optimization, Convection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471160 Propagation of Viscous Waves and Activation Energy of Hydrocarbon Fluids
Authors: Ram N. Singh, Abraham K. George, Dawood N. Al-Namaani
Abstract:
The Euler-s equation of motion is extended to include the viscosity stress tensor leading to the formulation of Navier– Stokes type equation. The latter is linearized and applied to investigate the rotational motion or vorticity in a viscous fluid. Relations for the velocity of viscous waves and attenuation parameter are obtained in terms of viscosity (μ) and the density (¤ü) of the fluid. μ and ¤ü are measured experimentally as a function of temperature for two different samples of light and heavy crude oil. These data facilitated to determine the activation energy, velocity of viscous wave and the attenuation parameter. Shear wave velocity in heavy oil is found to be much larger than the light oil, whereas the attenuation parameter in heavy oil is quite low in comparison to light one. The activation energy of heavy oil is three times larger than light oil.Keywords: Activation Energy, Attenuation, Crude Oil, Navier- Stokes Equation, Viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871159 The First Integral Approach in Stability Problem of Large Scale Nonlinear Dynamical Systems
Authors: M. Kidouche, H. Habbi, M. Zelmat, S. Grouni
Abstract:
In analyzing large scale nonlinear dynamical systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solutions properties of the large scale system are then deduced from the solution properties of the individual subsystems and the nature of the interconnections. In this paper a new approach is proposed for the stability analysis of large scale systems, which is based upon the concept of vector Lyapunov functions and the decomposition methods. The present results make use of graph theoretic decomposition techniques in which the overall system is partitioned into a hierarchy of strongly connected components. We show then, that under very reasonable assumptions, the overall system is stable once the strongly connected subsystems are stables. Finally an example is given to illustrate the constructive methodology proposed.Keywords: Comparison principle, First integral, Large scale system, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271158 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571157 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation
Authors: Minghui Wang, Juntao Zhang
Abstract:
An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.
Keywords: Inversion-free method, Hermitian positive definite solution, Maximal solution, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16061156 The Solution of the Direct Problem of Electrical Prospecting with Direct Current under Conditions of Ground Surface Relief
Authors: Balgaisha Mukanova, Tolkyn Mirgalikyzy
Abstract:
Theory of interpretation of electromagnetic fields studied in the electrical prospecting with direct current is mainly developed for the case of a horizontal surface observation. However in practice we often have to work in difficult terrain surface. Conducting interpretation without the influence of topography can cause non-existent anomalies on sections. This raises the problem of studying the impact of different shapes of ground surface relief on the results of electrical prospecting's research. This research examines the numerical solutions of the direct problem of electrical prospecting for two-dimensional and three-dimensional media, taking into account the terrain. The problem is solved using the method of integral equations. The density of secondary currents on the relief surface is obtained.
Keywords: Ground surface relief, method of integral equations, numerical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241155 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.
Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19371154 An Economic Evaluation of Subjective Well-Being Derived from Sport Participation
Authors: Huei-Fu Lu
Abstract:
This study links up the theories of social psychology, economics and sport management to assess the impact of sport participation on subjective well-being (SWB) and use a simple statistic method to estimate the relative monetary value that sport participation derives SWB for Taiwan-s college students. By constructing proper measurements on sport participation and SWB respectively, a structural equation model (SEM) is developed to perform a confirmatory factory analysis, and the causal relationship between sport participation and SWB as well as the effect of the demographic variables on these two concepts are also discussed.Keywords: Demographics, Economic value, Sport participation, Structural equation modeling (SEM), Subjective well-being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731153 Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations
Authors: Mohana Sundaram Muthuvalu, Jumat Sulaiman
Abstract:
In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.
Keywords: Complexity reduction approach, Composite trapezoidal scheme, Jacobi method, Linear Fredholm integral equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951152 The Application of HLLC Numerical Solver to the Reduced Multiphase Model
Authors: Fatma Ghangir, Andrzej F. Nowakowski, Franck C. G. A. Nicolleau, Thomas M. Michelitsch
Abstract:
The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.
Keywords: Multiphase flow, gas-liquid flow, Godunov schems, Riemann solvers, HLL scheme, HLLC scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26041151 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions
Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic
Abstract:
Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8881150 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation
Authors: Sarun Phibanchon
Abstract:
The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.
Keywords: soliton, iterative method, spectral method, plasma
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621149 Study of Explicit Finite Difference Method in One Dimensional System
Authors: Azizollah Khormali, Seyyed Shahab Tabatabaee Moradi, Dmitry Petrakov
Abstract:
One of the most important parameters in petroleum reservoirs is the pressure distribution along the reservoir, as the pressure varies with the time and location. A popular method to determine the pressure distribution in a reservoir in the unsteady state regime of flow is applying Darcy’s equation and solving this equation numerically. The numerical simulation of reservoirs is based on these numerical solutions of different partial differential equations (PDEs) representing the multiphase flow of fluids. Pressure profile has obtained in a one dimensional system solving Darcy’s equation explicitly. Changes of pressure profile in three situations are investigated in this work. These situations include section length changes, step time changes and time approach to infinity. The effects of these changes in pressure profile are shown and discussed in the paper.
Keywords: Explicit solution, Numerical simulation, Petroleum reservoir, Pressure distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42031148 A New Derivative-Free Quasi-Secant Algorithm For Solving Non-Linear Equations
Authors: F. Soleymani, M. Sharifi
Abstract:
Most of the nonlinear equation solvers do not converge always or they use the derivatives of the function to approximate the root of such equations. Here, we give a derivative-free algorithm that guarantees the convergence. The proposed two-step method, which is to some extent like the secant method, is accompanied with some numerical examples. The illustrative instances manifest that the rate of convergence in proposed algorithm is more than the quadratically iterative schemes.Keywords: Non-linear equation, iterative methods, derivative-free, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771147 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C
Authors: A.Tajaddini
Abstract:
In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.
Keywords: Bisymmetric matrices, Paige’s algorithms, Least square.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13941146 Box Counting Dimension of the Union L of Trinomial Curves When α ≥ 1
Authors: Kaoutar Lamrini Uahabi, Mohamed Atounti
Abstract:
In the present work, we consider one category of curves denoted by L(p, k, r, n). These curves are continuous arcs which are trajectories of roots of the trinomial equation zn = αzk + (1 − α), where z is a complex number, n and k are two integers such that 1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting by L the union of all trinomial curves L(p, k, r, n) and using the box counting dimension as fractal dimension, we will prove that the dimension of L is equal to 3/2.Keywords: Feasible angles, fractal dimension, Minkowski sausage, trinomial curves, trinomial equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631