Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Solving of the Fourth Order Differential Equations with the Neumann Problem

Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni

Abstract:

In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333907

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103

References:


[1] A. A. Dezin, Degenerate Operator Equations, Mat. Sbornik, vol. 43, no. 3, pp. 287 - 298, 1982
[in Russian].
[2] A. A. Dezin, Partial Differential Equations (An Introduction to a General Theory of Linear Boundary Value Problems), Springer, 1987.
[3] L. Tepoyan, Degenerate Fourth-Order Differential-Operator Equations
[in Russian], Differential'nye Urawneniya, vol. 23, no. 8, 1987, p.p. 1366 - 1376, English transl. in Amer. Math. Society, vol. 23, no. 8, 1988, p.p. 930 - 939.
[4] L. P. Tepoyan, On a Degenerate Differential-Operator Equation of Higher Order, Izvestya Natsionalnoi Akademii Nauk Armenii. Matematika, vol. 34, no. 5, p.p. 48 - 56, p.p. 1999.
[5] L. D. Kudryavtzev, On Equivalent Norms in the Weight Spaces, Trudy Mat. Inst. AN SSSR, vol. 170, p.p. 161 - 190, 1984
[in Russian].
[6] G. H. Hardy, J. E. Littlewood, G.Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1964.
[7] R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Electronic Journal of Differential Equations, Monograph 01,1994.
[8] V. I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999.