**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31097

##### A Finite Element Solution of the Mathematical Model for Smoke Dispersion from Two Sources

**Authors:**
Nopparat Pochai

**Abstract:**

**Keywords:**
Air Pollution,
semi-implicit method,
Smoke dispersion,
Finite element
method,
Stream function,
Vorticity equation,
Convection-diffusion
equation

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1075838

**References:**

[1] Ciuperca, I., Hafidi, I. and Jai, M., Analysis of a parabolic compressible first-order slip Reynolds equation with discontinuous coefficients, Nonlinear Analysis: Theory, Methods & Applications, 69(4) (2008), 1219-1234.

[2] Crank, J., Nicolson, P., A practical method for numerical solution of partial differential equations of heat conduction type, Proc. Cambridge Philos. Soc., 43:50-67, 1947.

[3] Hassan, M.H.A., Eltayeb, I.A., Diffusion of dust particles from a point source above ground level and a line source at ground level, Geophys. J. Int., 142 (2000), 426-438.

[4] Kai, S., Chun-qiong, L., Nan-shan, A. and Xiao-hong, Z., Using three methods to investigate time-scaling properties in air pollution indexes time series, Nonlinear Analysis: Real World Applications, 9(2) (2008), 693-707.

[5] Konglok, S.A., Tangmanee, S., Numerical Solution of Advection- Diffusion of an Air Pollutant by the Fractional Step Method, Proceeding in the 3rd national symposium on graduate research, Nakonratchasrima, Thailand, July, 18th - 19th, 2002.

[6] Konglok, S.A., A K-model for simulating the dispersion of sulfur dioxide in a tropical area, Journal of Interdisciplinary Mathematics, 10:789-799, 2007.

[7] Konglok, S.A., Pochai, N, Tangmanee, S., A Numerical Treatment of the Mathematical Model for Smoke Dispersion from Two Sources, Proceeding in International Conference in Mathematics and Applications (ICMA-MU 2009), Bangkok, Thailand, December 17th - 19th, 2009.

[8] Naresh, R., Sundar, S. and Shukla, J.B., Modeling the removal of gaseous pollutants and particulate matters from the atmosphere of a city, Nonlinear Analysis: Real World Applications, 8(1) (2007), 337-344.

[9] Ninomiya, H. and Onishi, K., Flow analysis using a PC, CRC Press, 1991.

[10] Pasquill, F., Atmospheric Diffusion, 2nd edn., Horwood, Chicsester, 1974.

[11] Prez-Chavela, E. , Uribe, F.J. and Velasco, R.M., The global flow in the Chapman mechanism , Nonlinear Analysis: Theory, Methods & Applications, 71(1-2) (2009), 88-95.

[12] Richtmyer, R.D., Morton, K.W., Difference methods for initial-value problems, Interscience, New York, 1967.

[13] Yanenko, N.N., The Method of fractional Steps, Springer-Verlag, 1971.