**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**2147

# Search results for: Matrix equations

##### 2147 Solving Linear Matrix Equations by Matrix Decompositions

**Authors:**
Yongxin Yuan,
Kezheng Zuo

**Abstract:**

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

**Keywords:**
Matrix equation,
Generalized inverse,
Generalized
singular-value decomposition.

##### 2146 On Positive Definite Solutions of Quaternionic Matrix Equations

**Authors:**
Minghui Wang

**Abstract:**

**Keywords:**
Matrix equation,
Quaternionic matrix,
Real representation,
positive (semi)definite solutions.

##### 2145 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide

**Authors:**
Arti Vaish,
Harish Parthasarathy

**Abstract:**

**Keywords:**
Electromagnetism,
Maxwell's Equations,
Anisotropic permittivity,
Wave equation,
Matrix Equation,
Permittivity tensor.

##### 2144 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

**Authors:**
Khairil Iskandar Othman,
Zarina Bibi Ibrahim,
Mohamed Suleiman

**Abstract:**

**Keywords:**
Backward Differentiation Formula,
block,
ordinarydifferential equations.

##### 2143 Iterative Solutions to Some Linear Matrix Equations

**Authors:**
Jiashang Jiang,
Hao Liu,
Yongxin Yuan

**Abstract:**

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

**Keywords:**
Matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.

##### 2142 Frequency Transformation with Pascal Matrix Equations

**Authors:**
Phuoc Si Nguyen

**Abstract:**

**Keywords:**
Frequency transformation,
Bilinear z-transformation,
Pre-warping frequency,
Digital filters,
Analog filters,
Pascal’s
triangle.

##### 2141 Out-of-Plane Free Vibrations of Circular Rods

**Authors:**
Faruk Fırat Çalım,
Nurullah Karaca,
Hakan Tacettin Türker

**Abstract:**

**Keywords:**
Circular rod,
Out-of-plane free vibration analysis,
Transfer Matrix Method.

##### 2140 Matrix Valued Difference Equations with Spectral Singularities

**Authors:**
Serifenur Cebesoy,
Yelda Aygar,
Elgiz Bairamov

**Abstract:**

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

**Keywords:**
Difference Equations,
Jost Functions,
Asymptotics,
Eigenvalues,
Continuous Spectrum,
Spectral Singularities.

##### 2139 An Iterative Method for Quaternionic Linear Equations

**Authors:**
Bin Yu,
Minghui Wang,
Juntao Zhang

**Abstract:**

By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.

**Keywords:**
Quaternionic linear equations,
Real representation,
Iterative algorithm.

##### 2138 On Generalized New Class of Matrix Polynomial Set

**Authors:**
Ghazi S. Kahmmash

**Abstract:**

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

**Keywords:**
Generating functions,
Recurrences relation and Generalization of the new class matrix polynomial set.

##### 2137 Some Results on Parallel Alternating Methods

**Authors:**
Guangbin Wang,
Fuping Tan

**Abstract:**

In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results.

**Keywords:**
Nonsingular H-matrix,
parallel alternating method,
convergence.

##### 2136 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations

**Authors:**
Yiqin Lin,
Liang Bao,
Yimin Wei

**Abstract:**

In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.

**Keywords:**
Arnoldi process,
Krylov subspace,
Iterative method,
Sylvester equation,
Dissipative matrix.

##### 2135 Approximate Solutions to Large Stein Matrix Equations

**Authors:**
Khalide Jbilou

**Abstract:**

In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.

**Keywords:**
IEEEtran,
journal,
LATEX,
paper,
template.

##### 2134 On Algebraic Structure of Improved Gauss-Seidel Iteration

**Authors:**
O. M. Bamigbola,
A. A. Ibrahim

**Abstract:**

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

**Keywords:**
Linear system of equations,
Gauss-Seidel iteration,
algebraic structure,
convergence.

##### 2133 A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

**Authors:**
Rajeev,
N. K. Raigar

**Abstract:**

**Keywords:**
Operational matrix of differentiation,
Similarity
transformation,
Shifted second kind Chebyshev wavelets,
Stefan
problem.

##### 2132 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

**Authors:**
Fatemeh Panjeh Ali Beik

**Abstract:**

**Keywords:**
Matrix equations,
Iterative methods,
Block Krylovsubspace methods.

##### 2131 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

**Authors:**
jianhua Hou,
Changqing Yang,
and Beibo Qin

**Abstract:**

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

**Keywords:**
Hybrid functions,
Fredholm integral equation,
Blockpulse,
Chebyshev polynomials,
product operational matrix.

##### 2130 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

**Authors:**
Gu-Fang Mou,
Ting-Zhu Huang

**Abstract:**

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

**Keywords:**
Matrix completion,
matrix completion,
N10 -matrix,
non-combinatorially symmetric,
cycle,
digraph.

##### 2129 Fuzzy Adjacency Matrix in Graphs

**Authors:**
Mahdi Taheri,
Mehrana Niroumand

**Abstract:**

**Keywords:**
Graph,
adjacency matrix,
fuzzy numbers

##### 2128 On Some Properties of Interval Matrices

**Authors:**
K. Ganesan

**Abstract:**

**Keywords:**
Interval arithmetic,
Interval matrix,
linear equations.

##### 2127 A Computer Model of Quantum Field Theory

**Authors:**
Hans H. Diel

**Abstract:**

This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.

**Keywords:**
Computational Modeling,
Simulation of Quantum Theory,
Quantum Field Theory,
Quantum Electrodynamics

##### 2126 A Fast Cyclic Reduction Algorithm for A Quadratic Matrix Equation Arising from Overdamped Systems

**Abstract:**

**Keywords:**
Fast algorithm,
Cyclic reduction,
Overdampedquadratic matrix equation,
Structure-preserving doubling algorithm

##### 2125 Inverse Matrix in the Theory of Dynamic Systems

**Authors:**
R. Masarova,
M. Juhas,
B. Juhasova,
Z. Sutova

**Abstract:**

**Keywords:**
Dynamic system,
transfer matrix,
inverse matrix,
modeling.

##### 2124 Numerical Treatment of Matrix Differential Models Using Matrix Splines

**Authors:**
Kholod M. Abualnaja

**Abstract:**

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

**Keywords:**
Matrix Splines,
Cubic Splines,
Quartic Splines.

##### 2123 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

**Authors:**
F. Rezaie Moghaddam,
J. Amani,
T. Rezaie Moghaddam

**Abstract:**

**Keywords:**
Heat conduction,
Cellular automata,
convergencerate,
discrete system.

##### 2122 Development Partitioning Intervalwise Block Method for Solving Ordinary Differential Equations

**Authors:**
K.H.Khairul Anuar,
K.I.Othman,
F.Ishak,
Z.B.Ibrahim,
Z.Majid

**Abstract:**

**Keywords:**
Adam Block Method,
BDF,
Ordinary Differential
Equations,
Partitioning Block Intervalwise

##### 2121 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

**Authors:**
Zhuan-de Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

**Keywords:**
Backward MPSD iterative matrix,
Jacobi iterative matrix,
eigenvalue,
p-cyclic matrix.

##### 2120 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

**Authors:**
Won Sup Kim,
Xue-Mei Cui,
Seung Kee Han

**Abstract:**

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

**Keywords:**
Chaotic oscillator,
complex network,
inverse coherence matrix,
network estimation.

##### 2119 Delay-independent Stabilization of Linear Systems with Multiple Time-delays

**Authors:**
Ping He,
Heng-You Lan,
Gong-Quan Tan

**Abstract:**

**Keywords:**
Linear system,
Delay-independent stabilization,
Lyapunovfunctional,
Riccati algebra matrix equation.

##### 2118 Mathematical Modelling of Transport Phenomena in Radioactive Waste-Cement-Bentonite Matrix

**Authors:**
Ilija Plecas,
Uranija Kozmidis-Luburic,
Radojica Pesic

**Abstract:**

The leaching rate of 137Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a firstorder equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

**Keywords:**
bentonite,
cement ,
radioactive waste,
composite,
disposal,
diffusion