Search results for: Repair surface
1863 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction
Authors: T. G. Emam
Abstract:
The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.
Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751862 Comparison of Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulator under Salt Water Dip Wheel Test
Authors: J. Grasaesom, S. Thong-om, W. Payakcho, A. Oonsivilai, B. Marungsri
Abstract:
This paper presents the experimental results on ageing deterioration of silicone rubber outdoor polymer insulator under salt water dip wheel test based on IEC 62217. In order to comparison effect of chemical contents, silicone rubber outdoor polymer insulators having same configuration and leakage distant from two manufactures were tested together continuously 30,000 test cycles. Many discharge activities were observed in during the test. After 30,000 test cycles, in spite of same configuration, differences in degree of surface aging were observed. Physical analysis such as decreasing in hydrophobicity and increasing in hardness measurement were measured on two-type tested specimen surface in order to confirm degree of surface ageing. Furthermore, chemical analysis by ATR-FTIR to diagnose the chemical change of tested specimen surface was conducted to confirm the physical analysis results.Keywords: ageing of silicone rubber, salt water dip wheel test, silicone rubber polymer insulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34851861 The Effect of Fixing Kinesiology Tape onto the Plantar Surface during the Loading Phase of Gait
Authors: Albert K. Chong, Jasim Ahmed Ali Al-Baghdadi, Peter B. Milburn
Abstract:
Precise capture of plantar 3D surface of the foot at the loading gait phases on rigid substrates was found to be valuable for the assessment of the physiology, health and problems of the feet. Photogrammetry, a precision 3D spatial data capture technique is suitable for this type of dynamic application. In this research, the technique is utilised to study the plantar deformation as a result of having a strip of kinesiology tape on the plantar surface during the loading phase of gait. For this pilot study, one healthy adult male subject was recruited under the University’s human research ethics guidelines for this preliminary study. The 3D plantar deformation data with and without applying the tape were analysed. The results and analyses are presented together with detailed findings.
Keywords: Gait, human plantar, loading, Kinesiology Tape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081860 Effect of Uneven Surface on Magnetic Properties of Fe-Based Amorphous Transformer
Authors: Yeong-Hwa Chang, Chang-Hung Hsu, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan, Chun-Yao Lee; Chia-Shiang Yao, Yan-Lou He
Abstract:
This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.
Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831859 Need for Standardization of Manual Inspection in Small and Medium-Scale Manufacturing Industries
Authors: Adithya Nadig
Abstract:
In the field of production, characterization of surface roughness plays a vital role in assessing the quality of a manufactured product. The defined parameters for this assessment, each, have their own drawbacks in describing a profile surface. From the purview of small-scale and medium-scale industries, an increase in time spent for manual inspection of a product for various parameters adds to the cost of the product. In order to reduce this, a uniform and established standard is necessary for quantifying a profile of a manufactured product. The inspection procedure in the small and medium-scale manufacturing units at Jigani Industrial area, Bangalore, was observed. The parameters currently in use in those industries are described in the paper and a change in the inspection method is proposed.Keywords: Efficiency of quality assessment, areal profiling technique, manufacturing, standardization, Surface Roughness Characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8861858 Effect of Uneven Surface on Magnetic Properties of Fe-based Amorphous Power Transformer
Authors: Chang-Hung Hsu, Yeong-Hwa Chang, Chun-Yao Lee, Chia-Shiang Yao, Yan-Lou He, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan
Abstract:
This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm ± 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101857 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems
Authors: Jianhua Zhou, Yuwen Zhang
Abstract:
A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.
Keywords: Conduction, inverse problems, conjugated gradient method, laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8431856 Radiation Effect on Unsteady MHD Flow over a Stretching Surface
Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26751855 Ageing Deterioration of Hi gh-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test
Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri
Abstract:
This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.
Keywords: Cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32021854 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure
Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade
Abstract:
Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.Keywords: Bending moment, construction procedure, elastic modulus, relative position, soil, structure location, surface settlement, twin tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14611853 Instrumentation for Studying Real-time Popcorn Effect in Surface Mount Packages during Solder Reflow
Authors: Arijit Roy
Abstract:
Occurrence of popcorn in IC packages while assembling them onto the PCB is a well known moisture sensitive reliability issues, especially for surface mount packages. Commonly reflow soldering simulation process is conducted to assess the impact of assembling IC package onto PCB. A strain gauge-based instrumentation is developed to investigate the popcorn effect in surface mount packages during reflow soldering process. The instrument is capable of providing real-time quantitative information of the occurrence popcorn phenomenon in IC packages. It is found that the popcorn occur temperatures between 218 to 241°C depending on moisture soak condition, but not at the peak temperature of the reflow process. The presence of popcorn and delamination are further confirmed by scanning acoustic tomography as a failure analysis.
Keywords: Instrumentation, Popcorn, Real-time, Solder Reflow, Strain Gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26811852 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution
Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos
Abstract:
In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.
Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581851 Parametric Study on Grindability of GFRP Laminates Using Different Abrasives
Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram
Abstract:
A study on grindability of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) have been carried out to evaluate the significant parameters on wheel performance. Performance of Aluminum oxide and c-BN wheels during grinding of CSM GFRP laminate was evaluated in terms of grinding force and surface roughness during grinding. The cubic Boron Nitride wheel experiences higher tangential grinding forces components and lower normal force component than Aluminum oxide grinding wheels. In case of surface finish, Aluminum oxide grinding wheels outdo the cubic Boron Nitride grinding wheels.
Keywords: Grinding, glass fiber reinforced polymer laminates, grinding force, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17781850 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation
Authors: M. Farnush
Abstract:
This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.
Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11901849 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V
Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo
Abstract:
A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.
Keywords: Impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10191848 Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties
Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska
Abstract:
The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.
Keywords: Layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25061847 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies
Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
To ensure targeting of apoferritin nanocarrier with encapsulated doxorubicin drug, we used a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (APODOX) was coated either with gold nanoparticles (APODOX-Nano) or gold(III) chloride hydrate reduced with sodium borohydride (APODOX-HAu). The reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties and probably accompanied with the loss of its biological activity. Fluorescent properties of APODOX-Nano were similar to the unmodified APODOX; therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, ELISA-like method was used with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, the nanocarrier was applied. APODOX without the modification showed 5× lower affinity to the antigen than APODOX-Nano modified gold and targeting antibodies (human IgG antibodies).Keywords: Antibody targeting, apoferritin, doxorubicin, nanocarrier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22501846 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure
Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed
Abstract:
Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.
Keywords: Dynamic loading, geocell reinforcement, GRP pipe, PLAXIS 3D, surface settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551845 Some Geodesics in Open Surfaces Classified by Clairaut's Relation
Authors: Wongvisarut Khuangsatung, Pakkinee Chitsakul
Abstract:
In this paper, we studied some properties of geodesic on some open surfaces: Hyperboloid, Paraboloid and Funnel Surface. Geodesic equation in the v-Clairaut parameterization was calculated and reduced to definite integral. Some geodesics on some open surfaces as mention above were classified by Clairaut's relation.
Keywords: Geodesic, Surface of revolution, Clairaut's relation, Clairaut parameterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44991844 Statistical Process Optimization Through Multi-Response Surface Methodology
Authors: S. Raissi, R- Eslami Farsani
Abstract:
In recent years, response surface methodology (RSM) has brought many attentions of many quality engineers in different industries. Most of the published literature on robust design methodology is basically concerned with optimization of a single response or quality characteristic which is often most critical to consumers. For most products, however, quality is multidimensional, so it is common to observe multiple responses in an experimental situation. Through this paper interested person will be familiarize with this methodology via surveying of the most cited technical papers. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with more than two responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.Keywords: Multi-Response Surface Methodology (MRSM), Design of Experiments (DOE), Process modeling, Quality improvement; Robust Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44581843 Simulation of Water Droplet on Horizontally Smooth and Rough Surfaces Using Quasi-Molecular Modelling
Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
We developed a method based on quasi-molecular modelling to simulate the fall of water drops on horizontally smooth and rough surfaces. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a falling water droplet was simulated at low impact velocity on both smooth and rough surfaces, the droplets moved periodically (i.e. the droplets moved up and down for a certain period, finally they stopped moving and reached a steady state), spreading and recoiling without splash or break-up. Spreading rates of falling water droplets increased rapidly as time increased until the spreading rate reached its steady state at time t ~ 0.25 s for rough surface and t ~ 0.40 s for smooth surface. The droplet height above both surfaces decreased as time increased, remained constant after the droplet diameter attained a maximum value and reached its steady state at time t ~ 0.4 s. However, rough surface had higher spreading rates of falling water droplets and lower height on the surface than smooth one.Keywords: Quasi-molecular modelling, particle modelling, molecular aggregate approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301842 Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet
Authors: Yisheng Rong, Jian Sun, Weiqiang Liu, Renjun Zhan
Abstract:
A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.
Keywords: opposing jet, aerodynamic heating, total pressure ratio, thermal protection system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681841 Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel
Authors: Nilrudra Mandal, B Doloi, B Mondal
Abstract:
An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.Keywords: Analysis of variance (ANOVA), Central Composite Design (CCD), Response Surface Methodology (RSM), Zirconia Toughened Alumina (ZTA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27831840 Functionalized Nanoparticles as Sorbents for Removal of Toxic Species
Authors: Jerina Majeed, Jayshree Ramkumar, S. Chandramouleeswaran, A. K. Tyagi
Abstract:
Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity.
Keywords: Mercury, lead, thiol functionalization, ZnO NPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22391839 Modeling of Bisphenol A (BPA) Removal from Aqueous Solutions by Adsorption Using Response Surface Methodology (RSM)
Authors: Mohammad Ali Zazouli, Farzaneh Veisi, Amir Veisi
Abstract:
Bisphenol A (BPA) is an organic synthetic compound that has many applications in various industries and is known as persistent pollutant. The aim of this research was to evaluate the efficiency of bone ash and banana peel as adsorbents for BPA adsorption from aqueous solution by using Response Surface Methodology. The effects of some variables such as sorbent dose, detention time, solution pH, and BPA concentration on the sorption efficiency was examined. All analyses were carried out according to Standard Methods. The sample size was performed using Box-Benken design and also optimization of BPA removal was done using response surface methodology (RSM). The results showed that the BPA adsorption increases with increasing of contact time and BPA concentration. However, it decreases with higher pH. More adsorption efficiency of a banana peel is very smaller than a bone ash so that BPA removal for bone ash and banana peel is 62 and 28 percent, respectively. It is concluded that a bone ash has a good ability for the BPA adsorption.
Keywords: Adsorbent, banana peel, bisphenol A (BPA), bone ash, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531838 Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology
Authors: A. Shyamala Devi, K. Chitra Devi, R. Rajendiran
Abstract:
A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.
Keywords: Bacillus subtilis, extracellular lipase, Plackett–Burman design, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41461837 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.
Keywords: Parameterization, response surface, structure optimization, pressure hull.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11621836 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.
Keywords: Nanocomposite, polysulfone, rheology, sepiolite, solution mixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30741835 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions
Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani
Abstract:
In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21891834 Dextran Modified Silicon Photonic Microring Resonator Sensors
Authors: Jessie Yiying Quah, Vivian Netto, Jack Sheng Kee, Eric Mouchel La Fosse, Mi Kyoung Park
Abstract:
We present a dextran modified silicon microring resonator sensor for high density antibody immobilization. An array of sensors consisting of three sensor rings and a reference ring was fabricated and its surface sensitivity and the limit of detection were obtained using polyelectrolyte multilayers. The mass sensitivity and the limit of detection of the fabricated sensor ring are 0.35 nm/ng mm-2 and 42.8 pg/mm2 in air, respectively. Dextran modified sensor surface was successfully prepared by covalent grafting of oxidized dextran on 3-aminopropyltriethoxysilane (APTES) modified silicon sensor surface. The antibody immobilization on hydrogel dextran matrix improves 40% compared to traditional antibody immobilization method via APTES and glutaraldehyde linkage.Keywords: Antibody immobilization, Dextran, Immunosensor, Label-free detection, Silicon micro-ring resonator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276