Search results for: energy efficiency
1276 Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity
Authors: Amir Amiri, Naghmeh Morakabati
Abstract:
During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.
Keywords: Chitosan, encapsulation, essential oil, nanogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581275 Efficient Sensors Selection Algorithm in Cyber Physical System
Authors: Ma-Wubin, Deng-Su, Huang Hongbin, Chen-Jian, Wu-Yahun, Li-zhuo
Abstract:
Cyber physical system (CPS) for target tracking, military surveillance, human health monitoring, and vehicle detection all require maximizing the utility and saving the energy. Sensor selection is one of the most important parts of CPS. Sensor selection problem (SSP) is concentrating to balance the tradeoff between the number of sensors which we used and the utility which we will get. In this paper, we propose a performance constrained slide windows (PCSW) based algorithm for SSP in CPS. we present results of extensive simulations that we have carried out to test and validate the PCSW algorithms when we track a target, Experiment shows that the PCSW based algorithm improved the performance including selecting time and communication times for selecting.
Keywords: Cyber physical system, sensor selection problem, PCSW based algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14571274 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste
Authors: Julieta D. Chelaru, Maria Gorea
Abstract:
The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion of the reinforcement steel rebar in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with added brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15%, 25% and 35% brick waste replacing the sand. The brick waste has majority content in SiO2, Al2O3, FeO3 and CaO. The grain size distribution of brick waste was close to that of the sand (dmax = 2 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion action on the rebar in concrete, at different brick waste concentrations, was investigated by electrochemical measurements (polarization curves and electrochemical impedance spectroscopy (EIS)) at 1 month and 26 months. The results obtained at 26 months revealed that the addition of the brick waste in mortar improved the anticorrosion properties in the case of all samples compared with the etalon mortar. The best results were obtained in the case of the sample with 15% brick waste (the efficiency was ≈ 90%). The corrosion intermediary layer formed on the rebar surface was evidenced by SEM-EDX.
Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6891273 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii
Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan
Abstract:
Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.Keywords: Bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12841272 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell
Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz
Abstract:
Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.
Keywords: Component, robotic, automated, production, offline programming, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11251271 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm
Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari
Abstract:
In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19151270 Intragenic MicroRNAs Binding Sites in MRNAs of Genes Involved in Carcinogenesis
Authors: Olga A. Berillo, Assel S. Issabekova, Anatoly T. Ivashchenko
Abstract:
MiRNAs participate in gene regulation of translation. Some studies have investigated the interactions between genes and intragenic miRNAs. It is important to study the miRNA binding sites of genes involved in carcinogenesis. RNAHybrid 2.1 and ERNAhybrid programmes were used to compute the hybridization free energy of miRNA binding sites. Of these 54 mRNAs, 22.6%, 37.7%, and 39.7% of miRNA binding sites were present in the 5'UTRs, CDSs, and 3'UTRs, respectively. The density of the binding sites for miRNAs in the 5'UTR ranged from 1.6 to 43.2 times and from 1.8 to 8.0 times greater than in the CDS and 3'UTR, respectively. Three types of miRNA interactions with mRNAs have been revealed: 5'- dominant canonical, 3'-compensatory, and complementary binding sites. MiRNAs regulate gene expression, and information on the interactions between miRNAs and mRNAs could be useful in molecular medicine. We recommend that newly described sites undergo validation by experimental investigation.Keywords: Exon, intron, miRNA, oncogene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20121269 Application of Japanese Origami Ball for Floating Multirotor Aerial Robot
Authors: P. H. Le, J. Molina, S. Hirai
Abstract:
In this work, we propose the application of Japanese “Origami” art for a floating function of a small aerial vehicle such as a hexarotor. A preliminary experiment was conducted using Origami magic balls mounted under a hexarotor. This magic ball can expand and shrink using an air pump during free flying. Using this interesting and functional concept, it promises to reduce the resistance of wind as well as reduce the energy consumption when the Origami balls are deflated. This approach can be particularly useful in rescue emergency situations. Furthermore, there are many unexpected reasons that may cause the multi-rotor has to land on the surface of water due to problems with the communication between the aircraft and the ground station. In addition, a complementary experiment was designed to prove that the hexarotor can fly maintaining the stability and also, takes off and lands on the surface of water using air balloons.
Keywords: Helicopter, Japanese Origami ball, Floating, Aerial Robots, Rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24701268 Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building
Authors: Kamyar Kabirifar, Majid Azarniush, Behbood Maashkar
Abstract:
A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power .
Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but it will cause the promotion of quality level of life of the people living in the surrounding area and in general the society.
Keywords: Quality of Life, Green Building, environment pollution, Sick Building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381267 Turbine Speed Variation Study in Gas Power Plant for an Active Generator
Authors: R. Kazemzadeh, J. M. Kauffmann
Abstract:
This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.Keywords: Power Generation, Energy Conversion, FrequencyControl, Matrix Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19071266 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.
Keywords: Fracture criterion, mixed mode loading, damage zone, microcracks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571265 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria
Authors: M. Ouagued, A. Khellaf
Abstract:
The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36591264 Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies
Authors: Manjeet Bansal, Diwan Singh, V.K.Garg, Pawan Rose
Abstract:
The potential of economically cheaper cellulose containing natural materials like rice husk was assessed for nickel adsorption from aqueous solutions. The effects of pH, contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of nickel were studied in batch process. The removal of nickel was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. The sorption data has been correlated with Langmuir, Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It was found that Freundlich and Langmuir isotherms fitted well to the data. Maximum nickel removal was observed at pH 6.0. The efficiency of rice husk for nickel removal was 51.8% for dilute solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were recorded before and after adsorption to explore the number and position of the functional groups available for nickel binding on to the studied adsorbent and changes in surface morphology and elemental constitution of the adsorbent. Pseudo-second order model explains the nickel kinetics more effectively. Reusability of the adsorbent was examined by desorption in which HCl eluted 78.93% nickel. The results revealed that nickel is considerably adsorbed on rice husk and it could be and economic method for the removal of nickel from aqueous solutions.Keywords: Adsorption, nickel, SEM, EDAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26921263 Novel Glycopolymers Containing Carbohydrate Moiety: Copolymerization and Thermal Properties
Authors: Liliana M. Ştefan, Ana M. Pană, Geza Bandur, Marcel Popa, Lucian M. Rusnac
Abstract:
Polymers are one of the most widely used materials in our every day life. The subject of renewable resources has attracted great attention in the last period of time. New polymeric materials derived from renewable resources, like carbohydrates draw attention to public eye especially because of their biocompatibility and biodegradability. The aim of our paper was to obtain environmentally compatible polymers from monosaccharides. Novel glycopolymers based on D-glucose have been obtained from copolymerization of a new monomer carrying carbohydrate moiety with methyl methacrylate (MMA) via free radical bulk polymerization. Differential scanning calorimetry (DSC) was performed in order to study the copolymerization process of the monomer into the chosen co-monomer; the activation energy of this process was evaluated using Ozawa method. The copolymers obtained were characterized using ATR-FTIR spectroscopy. The thermal stability of the obtained products was studied by thermogravimetry (TG).
Keywords: DSC, glycopolymer, monosaccarides, TG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17131262 Assessing the Global Water Productivity of Some Irrigation Command Areas in Iran
Authors: A. Montazar
Abstract:
The great challenge of the agricultural sector is to produce more crop from less water, which can be achieved by increasing crop water productivity. The modernization of the irrigation systems offers a number of possibilities to expand the economic productivity of water and improve the virtual water status. The objective of the present study is to assess the global water productivity (GWP) within the major irrigation command areas of I.R. Iran. For this purpose, fourteen irrigation command areas where located in different areas of Iran were selected. In order to calculate the global water productivity of irrigation command areas, all data on the delivered water to cropping pattern, cultivated area, crops water requirement, and yield production rate during 2002-2006 were gathered. In each of the command areas it seems that the cultivated crops have a higher amount of virtual water and thus can be replaced by crops with less virtual water. This is merely suggested due to crop water consumption and at the time of replacing crops, economic value as well as cultural and political factors must be considered. The results indicated that the lowest GWP belongs to Mahyar and Borkhar irrigation areas, 0.24 kg m-3, and the highest is that of the Dez irrigation area, 0.81 kg m-3. The findings demonstrated that water management in the two irrigation areas is just efficient. The difference in the GWP of irrigation areas is due to variations in the cropping pattern, amount of crop productions, in addition to the effective factors in the water use efficiency in the irrigation areas.Keywords: Iran, Irrigation command area, Water productivity, Virtual water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16831261 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.
Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24641260 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: Incremental conductance Algorithm, Perturb and Observe Algorithm, Photovoltaic System and Simulation Results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12691259 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.
Keywords: Bisection method, fixed-angle softened truss model with tension-stiffening, iterative root-finding technique, reinforced concrete membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8331258 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.
Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851257 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures
Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu
Abstract:
This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.Keywords: Swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311256 Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work.
Keywords: Catalytic muffler, Perforated inlet cone, Catalysts, Perforated pipe, Flow uniformity, Pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29081255 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions
Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani
Abstract:
In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21951254 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines
Authors: Zicheng Wang
Abstract:
Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.
Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6411253 Application of Boost Converter for Ride-through Capability of Adjustable Speed Drives during Sag and Swell Conditions
Authors: S. S. Deswal, Ratna Dahiya, D. K. Jain
Abstract:
Process control and energy conservation are the two primary reasons for using an adjustable speed drive. However, voltage sags are the most important power quality problems facing many commercial and industrial customers. The development of boost converters has raised much excitement and speculation throughout the electric industry. Now utilities are looking to these devices for performance improvement and reliability in a variety of areas. Examples of these include sags, spikes, or transients in supply voltage as well as unbalanced voltages, poor electrical system grounding, and harmonics. In this paper, simulations results are presented for the verification of the proposed boost converter topology. Boost converter provides ride through capability during sag and swell. Further, input currents are near sinusoidal. This eliminates the need of braking resistor also.Keywords: Adjustable speed drive, power quality, boost converter, ride through capabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031252 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis
Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon
Abstract:
Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.Keywords: Electromagnetism, defect, finite element method, sensitivity analysis, submarine power cables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10991251 Investigation of Increasing the Heat Transfer from Flat Surfaces Using Boundary Layer Excitation
Authors: M.H.Ghaffari
Abstract:
The present study is concerned with effect of exciting boundary layer on increase in heat transfer from flat surfaces. As any increase in heat transfer between a fluid inside a face and another one outside of it can cause an increase in some equipment's efficiency, so at this present we have tried to increase the wall's heat transfer coefficient by exciting the fluid boundary layer. By a collision between flow and the placed block at the fluid way, the flow pattern and the boundary layer stability will change. The flow way inside the channel is simulated as a 2&3-dimensional channel by Gambit TM software. With studying the achieved results by this simulation for the flow way inside the channel with a block coordinating with Fluent TM software, it's determined that the figure and dimensions of the exciter are too important for exciting the boundary layer so that any increase in block dimensions in vertical side against the flow and any reduction in its dimensions at the flow side can increase the average heat transfer coefficient from flat surface and increase the flow pressure loss. Using 2&3-dimensional analysis on exciting the flow at the flow way inside a channel by cylindrical block at the same time with the external flow, we came to this conclusion that the heat flux transferred from the surface, is increased considerably in terms of the condition without excitation. Also, the k-e turbulence model is used.Keywords: Cooling, Heat transfer, Turbulence, Excitingboundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12051250 Valorization of the Algerian Plaster and Dune Sand in the Building Sector
Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh
Abstract:
The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.
Keywords: Local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8181249 Graph Codes-2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally de-signed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, espe-cially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelisation. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.
Keywords: indexing, retrieval, multimedia, graph code, graph algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4591248 Recent Developments in Electric Vehicles for Passenger Car Transport
Authors: Amela Ajanovic
Abstract:
Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.Keywords: Costs, fuel intensity, electric vehicles, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23631247 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.
Keywords: Spectrum, interference, telecommunication, cognitive radio, frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881