
 

 

  
 

Abstract—In this paper multi-objective genetic algorithms are 
employed for Pareto approach  optimization of ideal Turboshaft 
engines. In the multi-objective optimization a number of  conflicting 
objective functions are to be optimized simultaneously. The 
important objective functions that have been considered for 
optimization are specific thrust 0( / )&F m , specific fuel consumption 

( PS ), output shaft power 0( / )& &shaftW m and overall efficiency ( )Oη . 
These objectives are usually conflicting with each other. The design 
variables consist of thermodynamic parameters (compressor pressure 
ratio, turbine temperature ratio and Mach number).  

At the first stage single objective optimization has been 
investigated and the method of NSGA-II has been used for multi-
objective optimization. Optimization procedures are performed for 
two and four objective functions and the results are compared for 
ideal Turboshaft engine. In order to investigate the optimal 
thermodynamic behavior of two objectives, different set, each 
including two objectives of output parameters, are considered 
individually. For each set Pareto front are depicted. The sets of 
selected decision variables based on this Pareto front, will cause the 
best possible  combination of corresponding objective functions. 

There is no superiority for the points on the Pareto front figure, 
but they are superior to any other point. In the case of four objective 
optimization the results are given in tables.  

 
Keywords—Multi-objective, Genetic algorithm, Turboshaft 

Engine.  

I. INTRODUCTION 
N most real-world problems, several goals must be satisfied 
simultaneously in order to obtain an optimal solution. The 

multiple objectives are typically conflicting and non-
commensurable, and must be satisfied simultaneously. For 
example, we might want to be able to maximize the output 
shaft power of a turboshaft engine while minimizing the fuel 
consumption. Actually, multi-objective optimization is very  
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different than the single-objective optimization. In single 
objective optimization, one attempts to obtain the best design 
or decision, which usually the global minimum or the global 
maximum depending on the optimization problem is that of 
minimization or maximization. In multiple objective 
optimization, there may not exist one solution which is best 
(global minimum or maximum) with respect to all objectives. 
In multi-objective optimization problem, there exist a set of 
solutions which are superior to the rest of solution in the 
search space when all objectives are considered but are 
inferior to other solution in the space in one or more 
objectives. These solutions are known as Pareto-optimal 
solutions or nondominated solutions. Since none of the 
solution in the nondominated set is absolutely better than any 
other, any one of them is an acceptable solution [1-4]. 

There are many methods to solve multi-objective problems. 
In this paper we use the Non-dominated Sorting Genetic 
Algorithm (NSGA-II). NSGA-II proposed in Srinivas and 
Deb [5]. 

In this paper, an optimal set of design variables in 
turboshaft engines, namely, the input flight Mach number 0M , 
the pressure ratio of the compressor cπ , and the Turbine 
temperature ratio tτ  are used by Pareto approach to multi-
objective optimization. First, different pairs of conflicting 
objectives in an ideal turboshaft engine are selected for 
optimization. Then, a new diversity preserving algorithm 
called ε-elimination diversity algorithm is used for enhancing 
the performance of NSGA-II in terms of diversity of 
population and Pareto fronts. The modified algorithm has 
been used for multi-objective optimization with more than two 
objectives by Atashkari et.al [6]. Finally, four-objective 
optimization approaches of turboshaft engines is conducted 
considering oη , 0/ &F m , 0/& &shaftW m  and PS  as competing 
objectives. The superiority of the ε-elimination diversity 
preserving mechanism is shown, compared to that of NSGA-
II.  

II. MULTI-OBJECTIVE OPTIMIZATION 
Multi-objective optimization, which is also called 

multicriteria optimization or vector optimization, is defined as 
finding a vector of decision variables satisfying constraints to 
give acceptable values to all objective functions [3,7]. In 
general, it can be mathematically defined as: find the vector 
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* * * *
1 2[ , ,..., ]TnX x x x= to optimize 

1 2( ) [ ( ), ( ),..., ( )]= T
kF X f x f x f x  (1) 

 
subject to m inequality constraints 
 

( ) 0, 1,...,≤ =ig X i m  (2) 
 
and p equality constraints 
 

( ) 0, 1,...,= =jh X i p  (3) 

 
Where * ∈ ℜ nX  is the vector of decision or design 

variables, and ( ) ∈ ℜ kF X  is the vector of objective functions, 
which must each be either minimized or maximized. However, 
without loss of generality, it is assumed that all objective 
functions are to be minimized. Such multi-objective 
minimization based on Pareto approach can be conducted 
using some definitions: 

 
A. Pareto Dominance 
A vector 1 2[ , ,..., ]= ∈ℜk

kU u u u  is dominant to vector    

1 2[ , ,..., ]= ∈ℜk
kV v v v  (denoted by <U V ) if and only 

if { } { }1,2,..., , 1,2,..., :∀ ∈ ≤ ∧ ∃ ∈ ≤i i j ji k u v j k u v . 
Thus, one can say there is at least one ju  which is smaller 

than jv whilst the remaining ,u s  is either smaller or equal to 
corresponding ,v s . 

 
B. Pareto Optimality 
A point * ∈ ΩX (Ω is a feasible region in ℜn  satisfying 

Equations (2) and (3) is said to be Pareto optimal (minimal) 
with respect to all ∈ ΩX  if and only if *( ) ( )<F X F X  . 
Alternatively, it can be readily restated as { }1,2,...,∀ ∈i k , 

∀ ∈ Ω −X { *X } 
*( ) ( )≤i if X f X { } *1,2,..., : ( ) ( )∧∃ ∈ <i ij k f X f X . 

In words, the solution *X is said to be Pareto optimal 
(minimal) if no other solution can be found to dominate *X  
using the definition of Pareto dominance. 

 
C. Pareto Set 
The Pareto set *Ρ  is a set in the decision variable space 

consisting of all the Pareto optimal vectors 
*Ρ = ∈ Ω ∃X{ }: ( ) ( )′ ′∈ Ω <X F X F X .  

Simply, there is no other ′X as a vector of decision 
variables in Ω  that dominates any *∈ ΡX . 

 
D. Pareto Front 
The Pareto front *Ρf is a set of vector of objective functions 

which are obtained using the vectors of decision variables in 
the Pareto set *Ρ , that is { }* *

1 2( ( ), ( ),..., ( )) : .Ρ = ∈ Ρkf f X f X f X X . 

So, one can say the Pareto front *Ρf  is a set of the vectors 
of objective functions mapped from *Ρ . 

Different algorithms have been widely used for 
multiobjevtive optimization because of their natural properties 
suited for these types of problems. The NSGA-II is one of 
these algorithms. In order to show this algorithm more clearly, 
some basics of NSGA-II are represented. In Fig. 1 
demonstrated now selects individuals from the entire 
population Rt to construct the next parent population Rt+1. The 
entire population Rt is simply the current parent population Pt 
plus its offspring population Qt which is created from the 
parent population Pt by using usual genetic operators. The 
selection is based on non-dominated sorting procedure which 
is used to classify the entire population Rt according to 
increasing order of dominance [6]. 

 

 
Fig. 1 Basics of NSGA-II procedure [6] 

 
Thus, the best Pareto fronts from the top of the sorted list is 

chosen to create the new parent population Pt+1 which is half 
the size of the entire population Rt. So, it should be noted that 
all the individuals of a certain front cannot be modified in the 
new parent population because of space, as shown in Fig. 1. 
To choose an exact number of individuals of that particular 
front, a crowded comparison operator is used in NSGA-II to 
find the best solutions to complete the new parent population. 
The crowded comparison procedure is based on density 
estimation of solutions surrounding a particular solution in a 
population or front. So, the solutions of a Pareto front are first 
sorted in each objective direction in the ascending order of 
that objective value. The crowding distance is then assigned 
equal to the half of the perimeter of the enclosing hyper box. 
Other objectives are sorted too and the overall crowding 
distance is calculated as the sum of the crowding distances 
from all objectives. The less crowded non-dominated 
individuals of that particular Pareto front are then selected to 
fill the new parent population. It is important to know that in a 
two-objective Pareto optimization, if the solutions of a Pareto 
front are sorted in a decreasing order of importance to one 
objective, these solutions are then automatically ordered in an 
increasing order of importance to the second objective. In 
other words, the hyper-boxes surrounding an individual 
solution remain unchanged in the objective-wise sorting 
procedure of the crowding distance of NSGA-II in the two-
objective Pareto optimization problem. However, in multi-
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objective Pareto optimization problem with more than two 
objectives, such sorting procedure of individuals based on 
each objective in this algorithm will cause different enclosing 
hyper boxes. Therefore, the overall crowding distance of an 
individual computed in this way may not exactly reflect the 
true measure of diversity or crowding property for the multi-
objective Pareto optimization problems with more than two 
objectives. 

In reference [6], a new method is presented which modifies 
NSGA-II so that it can be safely used for any number of 
objective functions (particularly for more than two 
objectives). The modified method is then used for a four 
objective thermodynamic optimization of turboshaft engines 
and the results are compared with those of the original NSGA-
II. 

III. THE ε -ELIMINATION DIVERSITY ALGORITHM [6] 
In the ε-elimination diversity approach that is used to main 

loop in NSGA-II, all the clones and/or ε-similar individuals 
based on Euclidean norm of two vectors are recognized and 
simply eliminated from the current population. Therefore, 
based on a pre-defined value of ε as the elimination threshold 
(ε = 0.001 has been used in this paper) all the individuals in a 
front within this limit of a particular individual are eliminated. 
It should be noted that such ε-similarity must exist both in the 
space of objectives and in the space of the associated design 
variables. This will ensure that very different individuals in 
the space of design variables having ε-similarity in the space 
of objectives will not be eliminated\ from the population. The 
pseudo-code of the ε-elimination approach is depicted in Fig. 
2. Evidently, the clones or ε- similar individuals are replaced 
from the population with the same number of new randomly 
generated individuals. 

 

 
Fig. 2 Pseudo-code of ε-elimination for preserving genetic 

diversity 

IV. MULTI-OBJECTIVE THERMODYNAMIC OPTIMIZATION OF 
TURBOSHAFT  

The Turboshaft engine is similar to the Turboprop except 
that power is supplied to a shaft rather than a propeller. The 
Turboshaft engine is used quite extensively for supplying 

power for helicopters [8]. For analysis, we consider an ideal 
Turboshaft engine, whose exhausted gas develops thrust 
through a nozzle. That is shown in Figs. 3 and 4. 

 

 

Fig. 3 Station numbering of Turboshaft engine 
 
 

 
Fig. 4 The T-S diagram of ideal Turboshaft engine 

 
The study of the thermodynamic cycle of a turboshaft 

engine involves different thermo-mechanical aspects such as 
specific output shaft power, specific thrust, overall efficiency, 
and specific fuel consumption [8]. A detailed description of 
the thermodynamic analysis and equations of ideal turboshaft 
engines is given in section V.  

The input parameters in this thermodynamic analysis which 
assumed as an ideal turboshaft engine given in section V are 
flight Mach number (M0), input air temperature (T0 ), specific 
heat ratio (γ ), heating value of fuel (hPR), exit burner total 
temperature (Tt4), turbine temperature ratio ( tτ ) and 
compressor pressure ratio, (πc). The output parameters in the 
thermodynamic analysis in the ideal turboshaft engine given 
in section V are, specific output shaft power ( 0/& &shaftW m ), 
specific thrust ( 0/ &F m ), fuel-to-air ratio (f ), specific fuel 
consumption (Sp) and overall efficiency (ηo ). In this study, 
some input parameters are already assumed as, T0 = 290 K,    
γ = 1.4, hpr = 48000 kJ.kg−1, and Tt4 = 1400 K. The input flight 
Mach number 0.1 < M0 < 0.5, the turbine temperature ratio 
0.2< tτ < 0.9 and the compressor pressure ratio 2 < π c< 20 are 
considered as design variables to be optimally found based on 
multi-objective optimization of 4 output parameters, namely, 

0/& &shaftW m , 0/ &F m , Sp , and ηo.  
 

0m&

Inlet Nozzle

Compressor shaftNet W&

Burner
HP
Turbine

Free
Turbine

0
2

3 4

4.5

5
9
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TABLE I 
NOMENCLATURE 

Symbol Quantity Units 

0M  Flight Mach number [-] 

R Gas constant [kJ.kg-1. K-1] 

a Speed of sound [m.s] 
gc Newton's constant [-] 

0T  Inlet temperature [K] 
γ  Ratio of specific heats [-] 

pC  Thermal conductivity [kJ.kg-1. K-1] 
PRh  Heating value [kJ.kg-1] 
4tT  Burner exit total temperature [K] 

Cπ  Compressor pressure ratio [-] 

tτ  Turbine temperature ratio [-] 

0/& &shaftW m
 

Output shaft power [kW. kg-1.sec] 

0/ &F m  Specific thrust [N·kg−1·s−1] 
f Fuel/air ratio [-] 

PS  Specific fuel consumption [mg. kW-1.sec-1] 
oη  overall efficiency [-] 

C  Work output coefficient [-] 
F(X) Vector of objective functions [-] 

 

V. EQUATIONS 
A. Assumptions 
Inlet diffuser, compressor, turbine and exit nozzle, all 

operate isentropically. 
No pressure loss in the burner. f = (fuel/air)<<1, 

eP (turboshaft exit pressure) = oP (ambient pressure). 
  
B. Equation 
  

(4)
1−

= PR Cγ
γ

 

(5)0 0= ca R g Tγ 

(6)2
0

11
2
−

= +r Mγτ 

(7)4

0

= tT
Tλτ 

(8)( )1 /( ) −=c c
γ γτ π 

(9)0 ( )= −p
r c

PR

C T
f

h λτ τ τ 

(10)( )1 1= − −r
tH c

λ

τ
τ τ

τ
 

(11)= t
tL

tH

τ
τ

τ
 

(12)9

9

2
1

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

t
r c

V
a

λ
λ

τ
τ τ

γ τ τ
 

(13)( ) 9
0 0

0

1
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

c
V

C M M
a

γ 

(14)( )1= −shaft tH tLC λτ τ τ 

(15)= +tot shaft cC C C 

(16)0
0

=
&

&
shaft

P shaft
W

C T C
m

 

(17)0

0 0

=
&

c PC C TF
m V

 

(18)
0

=P
tot P

fS
C C T 

(19)=
−

tot
O

r c

C

λ

η
τ τ τ

 

 
VI. RESULTS 

To analysis the optimal thermodynamic behavior of 
turboshaft engines, at the first each objective function was 
optimized individually, then 5 different sets, each including 
two objectives of the output parameters, are considered. Such 
pairs of objectives to be optimized separately have been 
chosen as 0 0( / , / )&& &shaftF m W m , 0( / , )& &shaft oW m η , 0( / , )& &shaft PW m S , 

0( / , )& PF m S  and 0( / , )oF m η& . It can be observed that 

0 0/ , / ,&& &shaft oF m W m η  are maximized whilst PS  is minimized in 
those sets of objective functions. Finally, all of objective 
functions have been optimized simultaneously. A population 
size of 40 has been chosen with crossover probability Pc and 
mutation probability Pm as 0.75 and 0.70, respectively for 
single-objective optimization and a population size of 120 has 
been chosen with crossover probability Pc and mutation 
probability Pm as 0.94 and 0.1 respectively for 2 and 4-
objective optimization.  

The results of the single-objective optimizations are 
summarized in Table II. 
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TABLE II 
VALUES OF DECISION VARIABLES AND OBJECTIVE FUNCTIONS 

 

0

0

/ 1 5 3 5 .1

1 3 .4 0 8 5
0 .4 6 8 4

0 .3 9 3 8

=

=
=

=

& &s h af t

C

t

W m

M

π
τ

 
0

0

/ 5 9 7 .2 4 0 1

7 .4 9 5 0
0 .7 0 3 1

0 .1

=

=

=
=

&

C

t

F m

M

π
τ

 

0

5 9 .4 7 4 6

2 0
0 .4 1 8 8

0 . 5

=

=
=

=

O

C

t

M

η

π
τ

 

0

3 9 .2 8 4 9

1 9 .9 9 9 7
0 .4 1 8 8
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=

=
=

=

p

C

t

S

M

π
τ

 

 
 

Some Pareto fronts of each pair of two objectives have been 
shown through Figs. 5-9. 
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Fig. 5 Pareto front of specific thrust and specific output shaft power 

in 2-objective optimization  
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Fig. 6 Pareto front of specific thrust and specific fuel consumption 2-

objective optimization 
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Fig. 7 Pareto front of specific thrust and overall efficiency in 2-

objective optimization 
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Fig. 8 Pareto front of specific output shaft power and specific fuel 

consumption 2-objective optimization 
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Fig. 9 Pareto front of overall efficiency and specific output shaft 

power 2-objective optimization 
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These figures and the associated values of the decision 

variables and the objective functions given in Table II simply 
cover all the 4 objectives studied in the two-objective Pareto 
optimization. The first and the end points of this diagrams that 
is explanatory extremum points at single-objective 
optimization are compared with the results given in Table II.  
The result of this comparison indicates the similar conformity. 

Fig. 5 shows variation of specific thrust and specific output 
shaft power. Interval variations are (1.1382, 597.1973) and 
(184.4425, 417.197) for specific thrust and specific output 
shaft power, respectively. The initial and the end of values of 
this diagram are very similar to the optimal values of single-
objective condition.   

Fig. 6 shows variation of specific thrust and specific fuel 
consumption. Interval variations are (3.0331, 596.4545) and 
(39.2516, 104.1194) for specific thrust and specific fuel 
consumption, respectively. At this diagram by attention to 
characteristic problem designer can be determined optimal 
point. At single-objective condition (Table II) minimum point 
of specific fuel consumption and maximum point of specific 
thrust are 39.2849 and 597.2401, respectively, that this points 
is closer to the initial and the end points of this diagram [9]. 

Fig. 7 shows variation of specific thrust and overall 
efficiency. The initial and the end point to this diagram 
indicates maximum both functions, that accord with the result 
of the obtained single-objective optimization. 

Fig. 8 shows variation of specific output shaft power and 
specific fuel consumption.  

Fig. 9 shows variation of overall efficiency and specific 
output shaft power. 
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Elimination Approach
NSGA-II

 
Fig. 10 Pareto front of overall efficiency and specific output shaft 

power in 2-objective optimization 
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Elimination Approach
NSGA-II

 
Fig. 11 Pareto front of specific thrust and specific fuel consumption 

in 2-objective optimization 
 
 

Figs. 10 and 11, depicts comparison of approach NSGA-II 
with elimination approach. As seen elimination approach is 
smoother than other one. 
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Four Objective Functions
Two Objective Functions

 
Fig. 12 Specific thrust variation with specific fuel consumption in 

both 4-objective & 2-objective optimization 
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Fig. 13 Specific thrust variation with specific output shaft power in 

both 4-objective & 2-objective optimization 
 

 
Fig. 12, demonstrate the non-dominated individuals in both 

4- objective and previously obtained 2-objective optimization 
in the plane of 0( / , )& PF m S . Such non-dominated individuals in 
both 4 and 2-objective optimization have alternatively been 
shown in the plane of 0 0( / , / )&& &shaftF m W m in Fig. 13. It should 
be noted that there is a single set of individuals as a result of 
4-objective optimization of 0/ &F m , 0/& &shaftW m , Sp and ηo that 
are shown in different planes together with the corresponding 
2-objective optimization results. Therefore, there are some 
points in each plane that may dominate others in the same 
plane in the case of 4-objective optimization. However, these 
individuals are all non-dominated when considering all four 
objectives simultaneously. By careful investigation of the 
results of 4-objective optimization in each plane, the Pareto 
fronts of the corresponding two-objective optimization can 
now be observed in these figures. It can be readily observed 
that the results of such 4-objective optimization include the 
Pareto fronts of each 2-objective optimization and provide, 
therefore, more optimal choices for the designer. 

VII. CONCLUSION 
In the single objective optimization an objective function 

was investigated by changing several design variables, 
simultaneously. The correlation between the optimal point and 
the objective function and design variable are obtained. In the 
two-objective optimization, the comparison of the first and the 
end points of Pareto curvature with the result of single-
objective show the compatibility with these diagrams. 

Further, it has been shown that the results of 4-objective 
optimization include those of 2-objective optimization in 
terms of Pareto frontiers and provide, consequently, more 
choices for optimal design. 
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