

Abstract—Offline programming (OLP) is a new method in robot

programming which is used widely in the industry nowadays which is
a simulation base method that can produce the robot codes for motion
according to virtual world in the simulation software. In this project
Delmia v5 is used as simulation software. First the work cell
component was modelled by Catia v5 and all of them was imported
to a process file in Delmia and placed roughly to form the virtual
work cell. Then robot was added to the work cell from the Delmia
library. Work cell was calibrated corresponding to real world work
cell to have accurate code. Tool calibration is the first step of
calibration scheme and then work cell equipment can be calibrated
using 6 point calibration method. Finally generated code needs to be
reformed to match related controller code instruction. At the last
stage IO were set to accomplish robots cooperation and make their
motion synchronized. The pros and cons also will be discussed to
clarify the presented results show the feasibility of the method and its
effect on production line efficiency. Finally the positive and negative
points of the implementation will be discussed.

Keywords—Component, robotic, automated, production, offline

programming, CAD.

 INTRODUCTION

N order to have useful work done by a robotic manipulator,
it must be programmed to accomplish the desired task or

motion cycle. Nowadays industrial robots generally require a
tremendous amount of programming to make them useful.
Their controllers are very sophisticated [1]; the commercial
robot programming environments are typically closed.

Systems and the programming languages vary among
manufacturers. Despite the great evolution of the industrial
robot controllers, in the majority of the industrial applications,
the robot programming is made, using one of the following
ways:

A. Manual On-Line Programming

On-line programming of the robots is a common method of
robot programming which programmer requires access to the
robot and teaches the points by jogging the robot manipulator
using teach pendant and reach the targets or have the program

A. Changizi is with the Tampere University of Technology, Department of

Mechanical Engineering and Industrial Systems, P.O. Box 589, FI-33101
Tampere, Finland (phone: +358 40 198 1784; fax +358 3 364 1429; e-mail:
alireza.changizi@tut.fi).

A. Rezaei and J. Muhammad were with Tampere University of
Technology, Department of Mechanical Engineering and Industrial Systems,
P.O. Box 589, FI-33101 Tampere, Finland (e-mail: arash.rezaii@gmail.com,
jamal.muhammad.vc@gmail.com).

J. Latokartano and M. Lanz are with the Tampere University of
Technology, Department of Mechanical Engineering and Industrial Systems,
P.O. Box 589, FI-33101 Tampere, Finland (e-mail: jyrki.latokartano@tut.fi,
Minna.Lanz@tut.fi).

automatic using sensors to predict the pass for gripper [4].
Then he needs to save the points in a program inside the
controller and then defines velocity profile and motion profile
for hitting the desired points. In this method programs exist
only in the memory of robot control system often difficult to
transfer, document, maintain, or modify. In the context of the
online programming, usually a robot programmer hired by a
factory must know specific languages of the robots employed
in the factory floor. Also developing manufacturing process
might probably need to integrate new brands of robot with
different (or even unique) properties where the programming
languages are different and it can cause extra fees to company
to hire a new programmer or teach [5].

Fig. 1 Workcell in a 3D view

B. Off-Line Programming

Off-line programming (OLP) is a powerful tool for saving
integrators and end-users time and money when designing a
work cell. Different approaches can aim for material handling
[3], automotive and industrial welding [2], digital
manufacturing, etc. The ability to analyze how a work cell will
behave before investing time and money on equipment makes
for a smoother transition from concept to reality. Simulation
and OLP allows integrators to study multiple scenarios of a
work cell before any metal is committed. Mistakes commonly
made in designing a work cell can be made in advance and
studied. Simulation and OLP are also powerful teaching tools
for engineering students.

In this context, purpose is to describe an offline
programming of KUKA KR125 in heavy laser laboratory in
Tampere University of Technology using Delmia v5.

User-Friendly Task Creation Using a CAD Integrated
Robotic System on a Real Workcell

Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz

I

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:9, No:2, 2015

439International Scholarly and Scientific Research & Innovation 9(2) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

05
74

6.
pd

f

Fig. 2 Code conversion process

 MODELLING OF WORK CELL EQUIPMENT

At very first steps, all work cell equipment and work pieces
was modelled in Catia V5 with an acceptable accuracy.
Modelling accuracy influence the accuracy of the generated
code for task markedly so more precise models, more precise
code can be generated. To accomplish this task all the
dimension was measured by tape and caliper, meanwhile
relative distance of modelled objects was also measured to
have a rough idea about placing the equipment in the virtual
work cell in Delmia simulation environment. Fig. 1 shows a
prepared model of the robots and the some of the equipment in
the cell.

At first glance, the work cell looks regular and well-ordered
with a good accuracy, whereas after plenty of measurements, it
was revealed that there are many discrepancies and non-
parallelity between symmetries component. Therefore a very
accurate method is needed to precisely place all the equipment
in the virtual world, correspondence to real word with all that
irregularities in it. This will be considered during calibration
process where all the distance and angle will be tuned
according to data coming from real world. Moreover any
dimensional error in 3D modelling causes inacceptable error in
the generated code. Also designing all possible details can help
user to have smothered and easier calibration process.

 PROCESS SIMULATION

The task of KUKA has been simulated in a process file
under device task definition and off-line programming work
benches. All the modelled part files in Catia were saved as
product files and after save management were imported to a
process file under resource layout workbench in the resource
detailing category. Note that all equipment which needs to be
calibrated should be imported as separate product file in the
work cell. Robots can be added to the work cell from Delmia

library under device task definition workbench. All well-
known Robots brands which extensively are used in the edge
industry (e.g. KUKA, ABB, MOTOMAN, FANUC, etc.) can
be found in the library of the Delmia. Delmia V5 has many
environments and quite wide range areas for different fields of
robot manufacturing processes. Different processes such as arc
welding, handling or grinding can be simulated in simulation
environments in Delmia. Users are able to make some tasks
and see the exact 3D graphical view of simulation. During
virtually teaching the robot and editing tasks, it is possible to
define different tool profiles and control the velocities and also
choose many kinds of robot motion and so many other details.

All simulated task containing any task properties like call
activity, tool profile, speed profile, IOs, etc. can be transform
into robot language files under device task definition in created
robot program. Delmia creates robot programs from the
contents of a simulated task and related controller data and
produce XML files as its general output. Each task related to
any kind of robot would transform to a XML file. A java
executor needed to be installed on the machine to transform the
created XML files to that specific robot language using a java
extension classes. Whole process is shown graphically in Fig.
2. There are some points one should notice. Check whether
Java 2 SDK version 1.4.1 or later is installed on your machine.
Check in case Java 1.5 or later is used then also xalan-j 2.7.1
must be installed. Note that translation process of java executor
should be installed on the pc to translate from xml file (output
of Delmia) to related robot language.

Any existing Robot program with all details can be loaded to
the Delmia. Also a generated program in delmia can be
downloaded and then copy to a robot controller. Generated
files are compatible with corresponding robot and controller.

 ROBOT CALIBRATION

 The robot calibration has the most important influence for
an accepted off-line programming because only if the virtual
world can exactly be mapped onto the real world, the
automatically computed programs can be used in practice.
Calibration features in DELMIA products allow the user to
identify the sources of position inaccuracy and to modify the
simulation world to match the real world. This correction
allows a generic simulation developed in DELMIA products to
be downloaded to different work cells that are nominally
identical but which differ slightly in the locations of their parts
and devices, their tool offsets, and their robot signatures. The
main problem is the tolerances of the robot. The entire
deviations of the mechanics, e.g. elasticity of the gear and
manufacturing inaccuracies are not considered since the
measuring system of the robot measures the position of the
rotor axis of the motors. While creating points in the virtual
world, the effect appears as a real error. The necessary total
accuracy e.g. in spot welding must be between 2 to 2.5 mm.
regarding the robot however the absolute accuracy must be less
than 1 mm.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:9, No:2, 2015

440International Scholarly and Scientific Research & Innovation 9(2) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

05
74

6.
pd

f

 CALIBRATION PROCESS

Calibration is an interactive process between real world and
virtual world [6]. Fig. 3 show the possible frames in the
environment used during calibration and simulation process.
Delmia calibrate the positions and orientations of the work
pieces and equipment in the work cell using recorded data by
robot in the real world. For this, a spike shaped tool with a
pointed edge need to be mounted on the robot to record the
desired points. A spike shape which made during this project is
shown in Fig. 4.

Fig. 3 Frames existing for all possible parts in the work environment

Fig. 4 Spike used for calibration of the rotational table

A. Tool Point Calibration

At first step it is necessary to calibrate spike. It can be done
using the Tool Point Calibration option under OLP workbench
in Delmia. The accuracy in determining tool profile of spike
has the main influence on the accuracy of whole calibration
process and accordingly the accuracy of whole work cell. Used
spike is shown in Fig. 4.

A very sharp pointed spike can make the procedure easier
and more accurate. The tool point calibration method adjusts
the tool profile (Utool) of a robot based on the coordinates of
mounting plate (0,0,0,0,0,0) of the robot for a fixed point in the
space (as shown in Fig. 4) at different orientation of robot's
wrist (robot configuration). Each orientation must be recorded

in a point in the robot controller while the robot tool profile is
(0,0,0,0,0,0), at least 6 orientation is needed. Each orientation
will be represented by a tag after uploading the program to the
Delmia. Next steps are inside the Delmia and it consists of
selecting a robot resource and a tag group representing
uploaded mount plate positions. The user also enters an initial
guess for the tool point parameters. The guess parameters
should be within a few centimeters of the actual tool
parameters.

Delmia compute the tool profile according to given tag
group and it generated a tool profile under robot tree in the
software. Data related to this tool profile like relative position
(x,y,z) of the spike relative to the TCP (6th joint of the robot)
and corresponding orientation (a1,a2,a3) can be read from
Delmia. These data need to be entered in the controller as new
tool profile (spike) while measuring the points in the 6th point
calibration process. The generated codes for 6 point calibration
should have spike as tool profiles. This can be set in controller
while measuring the point.

B. Six Point Calibration

Six point calibration deals with the main purpose of
calibration, namely placing all component in the modelled
work cell in simulation (Delmia work bench which deals with
robotic process) according to real world data coming through a
program which spike is used as it tool profile and 6th definite
point with a special properties (further will be illustrated) are
touched by pointed end of spike. Note that orientation is not
important in this process; position is the only matter which
should be considered. Hence the spike can touch the points in
any agile. The main aspect in selecting the 6th point is
consideration of the order in choosing the points on different
planes. Each rectangular object in space contains 6 planes.
Then 3 points in first plane and 2 in next plane and 1 in last
plane is required and it needs to pay attention that all these 3
planes should be perpendicular to each other. Then operator
should teach the points by the robot using spike. Then codes
related to those 6 points by teaching the points will be given it
to Delmia.

Note that if for any reason spike is unmouted from robot,
tool calibration should be done again; because in remounting
action different position and orientation may be achieved.
Consequently for each tool calibration, a new tool profile
should be created in controller and point should be taught by
the new spike profile. Also the position of the selected point
relative to the robot position should be considered. All points
should be reachable and they must exist in work envelope of
the robot. In some case due to large dimension of the part
comparing to robot scale, an extension should be added to the
part for achieving three perpendicular planes. Fig. 5 shows
ABB table which was calibrated by KUKA.

After touching all six points, generated code can be
downloaded to the Delmia using corresponded translator. This
code consists of a task and a tag group named as the program
in tag tree. In this step corresponding to 6 touched points, user
should create 6 tag points on the component which is calibrated
in this process. Then under OLP workbench, calibration panel,

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:9, No:2, 2015

441International Scholarly and Scientific Research & Innovation 9(2) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

05
74

6.
pd

f

6th point calibration button, user should select imported tag
point related to touched point and then select created tags to
coincide all 6 points. Now part is calibrated according to
imported tags.

Fig. 5 Calibrated table using KUKA manipulator

Created tags related to teach points are shown in red in Fig.

6. Note that they are in three perpendicular plane to satisfy
necessary condition for using 6th point calibration algorithm in
Delmia kernel.

 IO SIGNALS

Defining IO for gripping action and robot handshaking
action is necessary. Actually the 3D simulation in software
during work piece handling is only graphical and to change it
to the real world, creating output signals is required. For this
purpose one can create IOs in work cell sequencing
environment. By attaching the signal to the target operation and
putting it in true or false manner operator can also control the
griper condition(open or close) and simultaneous operation of
multiple robots in a work cell of real world. IO can help us to
manipulate robot cooperation in real world. In fact every
robot’s controller has input and output module which is vital
for a robot to effect surrounding environment. These signals
can be a control signal to auxiliary equipment like a work
positioner or a robot’s rail or even pneumatic grippers. These
are logical signals which can be dealt like Boolean variable in
conventional plc programming. That worth to mention that
some equipment such as grippers are normally closed or
normally open; so a pulse of being true or false for short time
e.g. 5 seconds can also be useful.

IOs are also important in cooperation of robots. Programmer
can use this Boolean variable for robots conversation. Robots
can perform their task sequentially using wait and set an IO. In
the way that at end of each task when other robot should begin
its task first robot can set an IO to be true and then second
robot should begin its task with a wait for IO line. Finally if IO
was set true, program can pass this line.

Fig. 7 illustrated how two robot controllers were connected
in the work cell.

Fig. 6 Tags marked with red used for calibrating the table

Fig. 7 IOs related ABB and KUKA robot connection

 CONCLUSIONS

The method was easy to implement and learning the process
for workers with basic engineering education was about 1 to 2
hours including the software and robot implementation task
creation. Simplicity of defining tasks in offline programming is
a useful feature but it worth to mention at this point that during
making it for real world, there will be no sensors installed on
gripper or other parts; so collisions can happen related to many
cases like errors in calibration, work piece modelling,
positioning, or griper modelling.

Hence the important point is to be aware of these facts to
avoid probable collisions.

To define tool profile, operator needs to consider the tool
profile number in controller and in Delmia. The reason is that
during importing the program through Java, the tool number is
based on the Delmia, so if the tool defined in controller
wouldn’t have the same number, then the program will use
some other profiles which can cause serious errors in
implementation.

The other point is actually the tool point which is going to be
used is not important. While using the same tool profile with
same dimensions in software and robot controller, all to
consider is the graphical simulation of the task that should be
without collisions.

As far as the there is no extra sensor installed on the robots,
there is the possibility for collisions or accidents in the
workcell all the time. Marking the workcell space or installing
fences around the robots is one method. As future work, it
would be proposed to install cameras with object recognition
modules to reduce the possibility for accidents.

REFERENCES
[1] M. Bruccoleri, C. D’Onofrio and U. La Commare, “Off-line

Programming and simulation for automatic robot control software
generation,” Industrial Informatics, 2007 5th IEEE International
Conference on (Volume:1), pp. 491-496, June 2007.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:9, No:2, 2015

442International Scholarly and Scientific Research & Innovation 9(2) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

05
74

6.
pd

f

[2] W. Dong, H. Li, X. Teng, “Off-line programming of Spot-weld Robot
for Car-body in White Based on Robcad,” Mechatronics and
Automation, 2007. ICMA 2007. International Conference on, pp. 763-
768, August 2007.

[3] P. Neto, “Off-line Programming and Simulation from CAD Drawings:
Robot-Assisted Sheet Metal Bending,” Annual Conference of the IEEE
Industrial Electronics Society, IECON, pp. 4233-4238, 2013.

[4] P. Neto, “On-line automatic robot programming: A case study in
grasping,” Robotics and Automation. Proceedings. 1987 IEEE
International Conference on (Volume:4), pp. 1292 - 1297, March 1987.

[5] S. Ishii, Y. MAEDA, “Programming of robots based on online
computation of their swept volumes,” Robot and Human Interactive
Communication, 2014 RO-MAN: The 23rd IEEE International
Symposium on, pp. 385-390, August 2014.

[6] M. Abderrahim, A. Khamis, S. Garrido, L. Moreno, “Accuracy and
Calibration Issues of Industrial Manipulators,” Industrial Robotics:
Programming, Simulation and Applicationl, ISBN 3-86611-286-6, pp.
702, ARS/plV, Germany, December 2006.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:9, No:2, 2015

443International Scholarly and Scientific Research & Innovation 9(2) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

05
74

6.
pd

f

