Search results for: scale effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4160

Search results for: scale effects

980 Optimization of HALO Structure Effects in 45nm p-type MOSFETs Device Using Taguchi Method

Authors: F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim, H. A. Elgomati, B. Y. Majlis, P. R. Apte

Abstract:

In this study, the Taguchi method was used to optimize the effect of HALO structure or halo implant variations on threshold voltage (VTH) and leakage current (ILeak) in 45nm p-type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) device. Besides halo implant dose, the other process parameters which used were Source/Drain (S/D) implant dose, oxide growth temperature and silicide anneal temperature. This work was done using TCAD simulator, consisting of a process simulator, ATHENA and device simulator, ATLAS. These two simulators were combined with Taguchi method to aid in design and optimize the process parameters. In this research, the most effective process parameters with respect to VTH and ILeak are halo implant dose (40%) and S/D implant dose (52%) respectively. Whereas the second ranking factor affecting VTH and ILeak are oxide growth temperature (32%) and halo implant dose (34%) respectively. The results show that after optimizations approaches is -0.157V at ILeak=0.195mA/μm.

Keywords: Optimization, p-type MOSFETs device, HALO Structure, Taguchi Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
979 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
978 Numerical Study of Airfoils Aerodynamic Performance in Heavy Rain Environment

Authors: M. Ismail, Cao Yihua, Zhao Ming, Abu Bakar

Abstract:

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of cambered NACA 64-210 and symmetric NACA 0012 airfoils. Our results show significant increase in drag and decrease in lift. We used preprocessing software gridgen for creation of geometry and mesh, used fluent as solver and techplot as postprocessor. Discrete phase modeling called DPM is used to model the rain particles using two phase flow approach. The rain particles are assumed to be inert. Both airfoils showed significant decrease in lift and increase in drag in simulated rain environment. The most significant difference between these two airfoils was the NACA 64-210 more sensitivity than NACA 0012 to liquid water content (LWC). We believe that the results showed in this paper will be useful for the designer of the commercial aircrafts and UAVs, and will be helpful for training of the pilots to control the airplanes in heavy rain.

Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
977 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: Alkali activation, slag, rapid chloride permeability, water absorption capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
976 Relative Contribution of Livestock Species to Meat Supply in Bauchi Metropolis, Bauchi, Nigeria

Authors: M M Abubakar, Y M Burrah

Abstract:

Primary and secondary data from the Bauchi abattoir were utilized to determine the relative contributions of different livestock species to meat supply in Bauchi Metropolis. Daily livestock slaughter figures for five months (June – October 2011) indicated that more goats (64.0) were slaughtered than either sheep (47.3) or cattle (41.30) each day (P<0.001) and fewer (P<0.05) animals (45.65) were slaughtered daily in June than either in August (57.07) or October (55.95). Five year (2006 – 2010) monthly slaughter records indicated that both species and year had significant (P<0.001) effects on number of animals slaughtered. More goats (2727.8) were slaughtered than either sheep (731.09) or cattle (520.06) each month and more animals were slaughtered in 2006 (1847.72/month) than in 2008, 2009 and 2010 (997.67, 1029.13 and 1273.75/month respectively). In terms of total carcass output, cattle accounted for 61-80% of the meat supply obtained from ruminant animals slaughtered at the Bauchi abattoir.

Keywords: Carcass Output, Livestock Slaughter Figures, Meat Supply, Ruminant Animals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
975 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established in order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: Computational Fluid Dynamics (CFD) model, Waste Incineration, Municipal Solid Waste (MSW), Fixed Bed, Primary air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
974 Implementing Education 4.0 Trends in Language Learning

Authors: Luz Janeth Ospina M.

Abstract:

The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.

Keywords: Active learning, education 4.0, higher education, pedagogical stance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
973 Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites

Authors: Uma Batra, Seema Kapoor

Abstract:

Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.

Keywords: Bioglass, Composite, Hydroxyapatite, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
972 The Relationship between Human Values and Service Quality with the Mediating Role of Motivation: A Quantitative Study on Malaysian Commercial Banks

Authors: Kuppusamy Singaravelloo, Zahra Kamiab

Abstract:

This study explores the mediating effects of motivation in the relationship between human values and service quality. To examine the fundamental relationships among human values, motivation, and service quality, a Structural Equation Model (SEM) with a full mediation model was adopted. The model was designed and subsequently analyzed by utilizing the Partial Least Squares (PLS) procedure on data collected from a survey that yielded 936 usable questionnaires. The survey was sent to all 117 branches of two local commercial banks (CIMB and Maybank) operating in Kuala Lumpur, Malaysia. Both banks ranked the highest in terms of asset size and market capitalization. The mediating role of motivation was examined in the relationship between four dimensions of human values and bank service quality, whereby human values initiate service quality. The results support the notion that employee motivation fully mediates the relationship between self-enhancement values and service quality in commercial banks. These results demonstrate the unpredictable role of the interaction structures of human values on bank service quality.

Keywords: Human values, service quality, mediation, motivation, commercial bank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
971 Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Enclosure with Non-Uniform Heating on Both Side Walls

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

This paper examines the natural convection in a square enclosure filled with a water-Al2O3 nanofluid and is subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra=103 to 106, Hartmann number varied from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4 and π) and the solid volume fraction of the nanoparticles between Ø = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. For γ=π/2 and Ra=105 the magnetic field augments the effect of nanoparticles. At Ha=0, the greatest effects of nanoparticles are obtained at γ = 0 and π/4 for Ra=104 and 105 respectively.

 

Keywords: Lattice Boltzmann Method, magnetic field, Natural convection, nanofluid, Sinusoidal temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
970 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses

Authors: Seung-Won Lee, Jong Soo Lee, Won-Jik Yang, Hyung-Joon Kim

Abstract:

A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods; an IDA method and aCSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.

Keywords: Seismic fragility curve, Incremental dynamic analysis, Capacity spectrum method, Reinforced concrete moment frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3045
969 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images

Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin

Abstract:

Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.

Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
968 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water

Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün

Abstract:

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
967 Synthesis of Activated Carbon Using Agricultural Wastes from Biodiesel Production

Authors: A. Buasri, N. Chaiyut, V. Loryuenyong, E. Phakdeepataraphan, S. Watpathomsub, V. Kunakemakorn

Abstract:

In this research, the optimum conditions for the synthesis of activated carbon from biodiesel wastes such as palm shells (PS) and Jatropha curcas fruit shells (JS) by chemical activation method using potassium hydroxide (KOH) as an activating agent under nitrogen atmosphere were investigated. The effects of soaking in hydrofluoric acid (HF), impregnation ratio, activation temperature and activation time on adsorption capacity of methylene blue (MB) and iodine (I2) solution were examined. The results showed that HF-treated activated carbons exhibited higher adsorption capacities by eliminating ash residues, which might fill up the pores. In addition, the adsorption capacities of methylene blue and iodine solution were also significantly influenced by the types of raw materials, the activation temperature and the activation time. The highest adsorption capacity of methylene blue 257.07mg/g and iodine 847.58mg/g were obtained from Jatropha curcas wastes.

Keywords: Activated Carbon, Palm Shells (PS), Jatropha Curcas Fruit Shells (JS), Agricultural Wastes, Biodiesel Wastes, Optimum Conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4183
966 Fast Dummy Sequence Insertion Method for PAPR Reduction in WiMAX Systems

Authors: Peerapong Uthansakul, Sakkarin Chaokuntod, Monthippa Uthansakul

Abstract:

In literatures, many researches proposed various methods to reduce PAPR (Peak to Average Power Ratio). Among those, DSI (Dummy Sequence Insertion) is one of the most attractive methods for WiMAX systems because it does not require side information transmitted along with user data. However, the conventional DSI methods find dummy sequence by performing an iterative procedure until achieving PAPR under a desired threshold. This causes a significant delay on finding dummy sequence and also effects to the overall performances in WiMAX systems. In this paper, the new method based on DSI is proposed by finding dummy sequence without the need of iterative procedure. The fast DSI method can reduce PAPR without either delays or required side information. The simulation results confirm that the proposed method is able to carry out PAPR performances as similar to the other methods without any delays. In addition, the simulations of WiMAX system with adaptive modulations are also investigated to realize the use of proposed methods on various fading schemes. The results suggest the WiMAX designers to modify a new Signal to Noise Ratio (SNR) criteria for adaptation.

Keywords: WiMAX, OFDM, PAPR, Dummy SequenceInsertion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
965 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, steel shear wall, nonlinear, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
964 Influence of Electrolytes and High Viscosity on Liquid-Liquid Separation

Authors: K. Anusarn, P. Chuttrakul, M. Schmidt, T. Kangsadan, A. Pfennig

Abstract:

Liquid-liquid extraction is a process using two immiscible liquids to extract compounds from one phase without high temperature requirement. Mostly, the technical implementation of this process is carried out in mixer-settlers or extraction columns. In real chemical processes, chemicals may have high viscosity and contain impurities. These impurities may change the settling behavior of the process without measurably changing the physical properties of the phases. In the current study, the settling behavior and the affected parameters in a high-viscosity system were observed. Batchsettling experiments were performed to experimentally quantify the settling behavior and the mixer-settler model of Henschke [1] was used to evaluate the behavior of the toluene + water system. The viscosity of the system was increased by adding polyethylene glycol 4000 to the aqueous phase. NaCl and Na2SO4 were used to study the influence of electrolytes. The results from this study show that increasing the viscosity of water has a higher influence on the settling behavior in comparison to the effects of the electrolytes. It can be seen from the experiments that at high salt concentrations, there was no effect on the settling behavior.

Keywords: Coalescence; electrolytes; liquid-liquid separation; high viscosity; mixer- settler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
963 Effects of Ice and Seawater Storing Conditions on the Sensory, Chemical and Microbiological Quality of the Mediterranean Hake (Merluccius merluccius) During Post-Catch Handling and Distribution

Authors: Danae Venieri, Christos Theodoropoulos, Maria Lagkadinou, Joan Iliopoulou-Georgudaki

Abstract:

Changes in the sensory, chemical and microbiological quality of the Mediterranean hake during post-catch handling and distribution were investigated. 115 fish samples were seasonally received during three stages of the transfer route from the sea to the consumer and two storage methods were recorded, seawater and ice storage. Microbiological evaluation revealed higher status for the ice stored samples regarding heterotrophic bacteria (2.68 log cfu/g and 1.92 log cfu/g at 22oC and 37°C respectively) and psychrotrophic counts (3.20 log cfu/g), with statistically significant differences among storage methods. Sensory evaluation also revealed higher status for the ice stored samples with a mean quality index of 0.17 and a spoilage time estimated at 30 hours, in contrast to seawater storage, which varied from 0.28 to 0.3, and a 14-hour estimated spoilage. Detected pathogens were identified mainly in the seawater stored samples, posing questions on the quality of the product reaching the seafood markets.

Keywords: Merluccius merluccius, Microbiological quality, Psychrotrophic bacteria, Sensory evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
962 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints

Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann

Abstract:

This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.

Keywords: Rail-track components, maintenance, optimal clustering, possession capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986
961 BugCatcher.Net: Detecting Bugs and Proposing Corrective Solutions

Authors: Sheetal Chavan, P. J. Kulkarni, Vivek Shanbhag

Abstract:

Although achieving zero-defect software release is practically impossible, software industries should take maximum care to detect defects/bugs well ahead in time allowing only bare minimums to creep into released version. This is a clear indicator of time playing an important role in the bug detection. In addition to this, software quality is the major factor in software engineering process. Moreover, early detection can be achieved only through static code analysis as opposed to conventional testing. BugCatcher.Net is a static analysis tool, which detects bugs in .NET® languages through MSIL (Microsoft Intermediate Language) inspection. The tool utilizes a Parser based on Finite State Automata to carry out bug detection. After being detected, bugs need to be corrected immediately. BugCatcher.Net facilitates correction, by proposing a corrective solution for reported warnings/bugs to end users with minimum side effects. Moreover, the tool is also capable of analyzing the bug trend of a program under inspection.

Keywords: Dependence, Early solution, Finite State Automata, Grammar, Late solution, Parser State Transition Diagram, StaticProgram Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
960 Farming Production in Brazil: Innovation and Land-Sparing Effect

Authors: Isabela Romanha de Alcantara, José Eustáquio Ribeiro Vieira Filho, José Garcia Gasques

Abstract:

Innovation and technology can be determinant factors to ensure agricultural and sustainable growth, as well as productivity gains. Technical change has contributed considerably to supply agricultural expansion in Brazil. This agricultural growth could be achieved by incorporating more land or capital. If capital is the main source of agricultural growth, it is possible to increase production per unit of land. The objective of this paper is to estimate: 1) total factor productivity (TFP), which is measured in terms of the rate of output per unit of input; and 2) the land-saving effect (LSE) that is the amount of land required in the case that yield rate is constant over time. According to this study, from 1990 to 2019, it appears that 87% of Brazilian agriculture product growth comes from the gains of productivity; the remaining 13% comes from input growth. In the same period, the total LSE was roughly 400 Mha, which corresponds to 47% of the national territory. These effects reflect the greater efficiency of using productive factors, whose technical change has allowed an increase in the agricultural production based on productivity gains.

Keywords: agriculture, land-saving effect, livestock, productivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
959 Wastewater Treatment in Moving-Bed Biofilm Reactor operated by Flow Reversal Intermittent Aeration System

Authors: B. K. Kim, D. Chang, D. J. Son, D. W. Kim, J. K. Choi, H. J. Yeon, C. Y. Yoon, Y. Fan, S. Y. Lim, K. H. Hong

Abstract:

Intermittent aeration process can be easily applied on the existing activated sludge system and is highly reliable against the loading changes. It can be operated in a relatively simple way as well. Since the moving-bed biofilm reactor method processes pollutants by attaching and securing the microorganisms on the media, the process efficiency can be higher compared to the suspended growth biological treatment process, and can reduce the return of sludge. In this study, the existing intermittent aeration process with alternating flow being applied on the oxidation ditch is applied on the continuous flow stirred tank reactor with advantages from both processes, and we would like to develop the process to significantly reduce the return of sludge in the clarifier and to secure the reliable quality of treated water by adding the moving media. Corresponding process has the appropriate form as an infrastructure based on u- environment in future u- City and is expected to accelerate the implementation of u-Eco city in conjunction with city based services. The system being conducted in a laboratory scale has been operated in HRT 8hours except for the final clarifier and showed the removal efficiency of 97.7 %, 73.1 % and 9.4 % in organic matters, TN and TP, respectively with operating range of 4hour cycle on system SRT 10days. After adding the media, the removal efficiency of phosphorus showed a similar level compared to that before the addition, but the removal efficiency of nitrogen was improved by 7~10 %. In addition, the solids which were maintained in MLSS 1200~1400 at 25 % of media packing were attached all onto the media, which produced no sludge entering the clarifier. Therefore, the return of sludge is not needed any longer.

Keywords: Municipal wastewater treatment, Biological nutrient removal, Alternating flow intermittent aeration system, Reversal flow intermittent aeration system, Moving-bed biofilm reactor, CFSTR, u-City, u-Eco city

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
958 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different from those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel, along with the associated edge stiffeners, subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in a parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, both the plate slenderness and the aspect ratio influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: Thin plate, transverse shear, tension field, finite element analysis, parametric study, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
957 Impact of Quality Assurance Mechanisms on the Work Efficiency of Staff in the Educational Space of Georgia

Authors: B. Gechbaia, K. Goletiani, G. Gabedava, N. Mikeltadze

Abstract:

At this stage, Georgia is a country which is actively involved in the European integration process, for which the primary priority is effective integration in the European education system. The modern Georgian higher education system is the process of establishing a new sociocultural reality, whose main priorities are determined by the Quality System as a continuous cycle of planning, implementation, checking and acting. Obviously, in this situation, the issue of management of education institutions comes out in the foreground, since the proper planning and implementation of personnel management processes is one of the main determinants of the company's performance. At the same time, one of the most important factors is the psychological comfort of the personnel, ensuring their protection and efficiency of stress management policy.

The purpose of this research is to determine how intensely the relationship is between the psychological comfort of the personnel and the efficiency of the quality system in the institution as the quality assurance mechanisms of educational institutions affect the stability of personnel, prevention and management of the stressful situation. The research was carried out within the framework of the Internal Grant Project «The Role of Organizational Culture in the Process of Settlement of Management of Stress and Conflict, Georgian Reality and European Experience » of the Batumi Navigation Teaching University, based on the analysis of the survey results of target groups. The small-scale research conducted by us has revealed that the introduction of quality assurance system and its active implementation increased the quality of management of Georgian educational institutions, increased the level of universal engagement in internal and external processes and as a result, it has improved the quality of education as well as social and psychological comfort indicators of the society.

Keywords: Quality assurance, effective management, stability of personnel, psychological comfort, stress management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
956 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data

Authors: Wei Lei, Hui Chen, Lin Lu

Abstract:

Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.

Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
955 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem

Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang

Abstract:

The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.

Keywords: Stud Krill Herd, economic dispatch, crossover, stud selection, valve-point effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
954 Modeling and Analysis of the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: A. H. Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME, water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: Diffusion, gases cross-over, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
953 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
952 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
951 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: Fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654