Farming Production in Brazil: Innovation and Land-Sparing Effect
Authors: Isabela Romanha de Alcantara, José Eustáquio Ribeiro Vieira Filho, José Garcia Gasques
Abstract:
Innovation and technology can be determinant factors to ensure agricultural and sustainable growth, as well as productivity gains. Technical change has contributed considerably to supply agricultural expansion in Brazil. This agricultural growth could be achieved by incorporating more land or capital. If capital is the main source of agricultural growth, it is possible to increase production per unit of land. The objective of this paper is to estimate: 1) total factor productivity (TFP), which is measured in terms of the rate of output per unit of input; and 2) the land-saving effect (LSE) that is the amount of land required in the case that yield rate is constant over time. According to this study, from 1990 to 2019, it appears that 87% of Brazilian agriculture product growth comes from the gains of productivity; the remaining 13% comes from input growth. In the same period, the total LSE was roughly 400 Mha, which corresponds to 47% of the national territory. These effects reflect the greater efficiency of using productive factors, whose technical change has allowed an increase in the agricultural production based on productivity gains.
Keywords: agriculture, land-saving effect, livestock, productivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793References:
[1] USDA, “USDA Agricultural Projections to 2029.” Office of the Chief Economist, World Agricultural Outlook Board, U.S. Department of Agriculture. Prepared by the Interagency Agricultural Projections Committee. Long-term Projections Report OCE-2020-1, 114 pp., 2020, (Online). Available: https://www.ers.usda.gov/webdocs/outlooks/95912/oce-2020-1.pdf?v=6510.2.
[2] A. Fishlow and J. E. R. Vieira Filho, Agriculture and Industry in Brazil: Innovation and Competitiveness. New York: Columbia University Press, 2020.
[3] T. S. Telles, A. J. Righetto, G. V. da Costa, B. Volsi, and J. F. de Oliveira, “Conservation agriculture practices adopted in Southern Brazil,” Int. J. Agric. Sustain., vol. 17, no. 5, pp. 338–346, 2019, doi: 10.1080/14735903.2019.1655863.
[4] D. M. Lapola et al., “Pervasive transition of the Brazilian land-use system,” Nat. Clim. Change, vol. 4, no. 1, pp. 27–35, 2014, doi: https://doi.org/10.1038/nclimate2056.
[5] J. Tollefson, “Food: The global farm,” Nat. News, vol. 466, no. 7306, pp. 554–556, 2010.
[6] J. E. R. Vieira Filho and J. M. F. J. da Silveira, “Mudança tecnológica na agricultura: uma revisão crítica da literatura e o papel das economias de aprendizado,” Rev. Econ. E Sociol. Rural, vol. 50, no. 4, pp. 721–742, 2012.
[7] E. Alves, G. da S. Souza, and A. S. P. Brandão, “Por que os preços da cesta básica caíram?,” Rev. Política Agríc., vol. 19, no. 2, pp. 14–20, 2010.
[8] A. De Janvry and E. Sadoulet, “Agricultural growth and poverty reduction: Additional evidence,” World Bank Res. Obs., vol. 25, no. 1, pp. 1–20, 2009.
[9] L. R. Christensen, “Concepts and measurement of agricultural productivity,” Am. J. Agric. Econ., vol. 57, no. 5, pp. 910–915, 1975.
[10] K. O. Fuglie, J. M. McDonald, and V. E. Ball, “Productivity growth in US agriculture. Economic Brief Number 9,” Econ. Res. Serv. - U. S. Dep. Agric., 2007.
[11] D. W. Jorgenson, “Empirical studies of depreciation,” Econ. Inq., vol. 34, no. 1, pp. 24–42, 1996, doi: 10.1111/j.1465-7295.1996.tb01362.x.
[12] E. Alves, “Tecnologia cristalizada e produtividade total dos fatores,” Rev. Econ. E Agronegócio, vol. 2, no. 4, pp. 547–560, 2004.
[13] J. G. Gasques, E. T. Bastos, C. Valdes, and M. R. P. Bacchi, “Total factor productivity in Brazilian agriculture,” in Productivity growth in agriculture: an international perspective, K. O. Fuglie, V. E. Ball, and S. L. Wang, Eds. Cambridge: CABI, 2012.
[14] C. Thirtle and P. Bottomley, “Total factor productivity in UK agriculture, 1967-90,” J. Agric. Econ., vol. 43, no. 3, pp. 381–400, 1992.
[15] IBGE, “Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017,” 2017. (Online). Available: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017.
[16] IBGE, “Instituto Brasileiro de Geografia e Estatística. Pesquisa Agrícola Municipal,” 2021. (Online). Available: https://sidra.ibge.gov.br/pesquisa/pam/tabelas.
[17] IBGE, “Instituto Brasileiro de Geografia e Estatística. Pesquisa Pecuária Municipal,” 2021. (Online). Available: https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2019.
[18] J. E. R. Vieira Filho, “Efeito poupa-terra e ganhos de produção no setor agropecuário brasileiro,” Texto Para Discussão 2386 - Inst. Pesqui. Econômica Apl. IPEA, 2018.
[19] G. B. Martha Jr, E. Alves, and E. Contini, “Land-saving approaches and beef production growth in Brazil,” Agric. Syst., vol. 110, no. 1, pp. 173–177, 2012, doi: https://doi.org/10.1016/j.agsy.2012.03.001.
[20] N. Rada, S. Helfand, and M. Magalhães, “Agricultural productivity growth in Brazil: Large and small farms excel,” Food Policy, vol. 84, pp. 176–185, 2019, doi: https://doi.org/10.1016/j.foodpol.2018.03.014.
[21] N. Rada and K. O. Fuglie, “New perspectives on farm size and productivity,” Food Policy, vol. 84, pp. 147–152, 2019, doi: https://doi.org/10.1016/j.foodpol.2018.03.015.
[22] USDA, “United States Department of Agriculture. Economic Research Service. International Agricultural Productivity,” 2020. Accessed: Nov. 19, 2020. (Online). Available: https://www.ers.usda.gov/data-products/international-agricultural-productivity/.
[23] K. O. Fuglie, S. L. Wang, and V. E. Ball, Productivity growth in agriculture: an international perspective. Cambridge, MA (USA): CABI, 2012.
[24] P. Bustos, B. Caprettini, and J. Ponticelli, “Agricultural productivity and structural transformation: Evidence from Brazil,” Am. Econ. Rev., vol. 106, no. 6, pp. 1320–1365, 2016.
[25] W. M. Cohen and D. A. Levinthal, “Innovation and learning: the two faces of R&D,” Econ. J., vol. 99, no. 397, pp. 569–596, 1989.
[26] MAPA, Ministério da Agricultura, Pecuária e Abastecimento. Valor bruto da produção agropecuária no Brasil. Brasília: MAPA, 2020.
[27] E. E. de Miranda, “Agricultura lidera a preservação ambiental,” Plant Proj., vol. 10, no. 1, pp. 42–43, 2018.
[28] J. Chiavari and C. L. Lopes, “Forest and land use policies on private lands: an international comparison,” Land Use Initiat., no. 1708, 2017.
[29] M. Lima, C. A. da Silva Junior, L. Rausch, H. K. Gibbs, and J. A. Johann, “Demystifying sustainable soy in Brazil,” Land Use Policy, vol. 82, pp. 349–352, 2019, doi: 10.1016/j.landusepol.2018.12.016.
[30] M. C. C. Stabile et al., “Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation,” Land Use Policy, vol. 91, p. 104362, 2019, doi: https://doi.org/10.1016/j.landusepol.2019.104362.
[31] J. Schielein and J. Börner, “Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon,” Land Use Policy, vol. 76, pp. 81–94, 2018, doi: https://doi.org/10.1016/j.landusepol.2018.04.052.
[32] T. S. Carvalho, E. P. Domingues, and J. M. Horridge, “Controlling deforestation in the Brazilian Amazon: Regional economic impacts and land-use change,” Land Use Policy, vol. 64, pp. 327–341, 2017, doi: https://doi.org/10.1016/j.landusepol.2017.03.001.
[33] J. G. da Silva, C. F. Ruviaro, and J. B. de S. Ferreira Filho, “Livestock intensification as a climate policy: Lessons from the Brazilian case,” Land Use Policy, vol. 62, pp. 232–245, 2017, doi: https://doi.org/10.1016/j.landusepol.2016.12.025.
[34] O. Cortner et al., “Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon,” Land Use Policy, vol. 82, pp. 841–853, 2019, doi: https://doi.org/10.1016/j.landusepol.2019.01.006.
[35] G. B. Martha Jr, E. Alves, and E. Contini, “Economic dimension of integrated crop-livestock systems,” Pesqui. Agropecuária Bras., vol. 46, no. 10, pp. 1117–1126, Oct. 2011, doi: 10.1590/S0100-204X2011001000002.
[36] N. Rada, “Assessing Brazil’s Cerrado agricultural miracle,” Food Policy, vol. 38, pp. 146–155, 2013, doi: https://doi.org/10.1016/j.foodpol.2012.11.002.
[37] A. Bonfiglio, B. Camaioni, S. Coderoni, R. Esposti, F. Pagliacci, and F. Sotte, “Are rural regions prioritizing knowledge transfer and innovation? Evidence from Rural Development Policy expenditure across the EU space,” J. Rural Stud., vol. 53, no. 1, pp. 78–87, 2017, doi: https://doi.org/10.1016/j.jrurstud.2017.05.005.
[38] M. D. Dill, G. Emvalomatis, H. Saatkamp, J. A. Rossi, G. R. Pereira, and J. O. J. Barcellos, “Factors affecting adoption of economic management practices in beef cattle production in Rio Grande do Sul state, Brazil,” J. Rural Stud., vol. 42, no. 1, pp. 21–28, 2015, doi: https://doi.org/10.1016/j.jrurstud.2015.09.004.
[39] D. Tilman, C. Balzer, J. Hill, and B. L. Befort, “Global food demand and the sustainable intensification of agriculture,” Proc. Natl. Acad. Sci., vol. 108, no. 50, pp. 20260–20264, 2011, doi: 10.1073/pnas.1116437108.
[40] FAO, “Food and Agriculture Organization of The United Nations. Global Agenda for Sustainable Livestock,” 2018.
[41] FAOSTAT, “Food and Agriculture Organization of The United Nations. Data,” 2018. (Online). Available: http://www.fao.org/faostat/en/#data.
[42] N. B. Da Costa Jr, T. C. Baldissera, C. E. Pinto, F. C. Garagorry, A. de Moraes, and P. C. de F. Carvalho, “Public policies for low carbon emission agriculture foster beef cattle production in Southern Brazil,” Land Use Policy, vol. 80, pp. 269–273, 2019, doi: https://doi.org/10.1016/j.landusepol.2018.10.014.
[43] N. G. R. de Mello and P. Artaxo, “Evolução do Plano de Ação para Prevenção e Controle do Desmatamento na Amazônia Legal,” Rev. Inst. Estud. Bras., vol. 66, pp. 108–129, 2017, doi: https://doi.org/10.11606/issn.2316-901X.v0i66p108-129