Search results for: voltage harmonic mitigation
951 Using Artificial Neural Network Algorithm for Voltage Stability Improvement
Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi
Abstract:
This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970950 The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of α-C:H Films
Authors: X. L. Zhou, S. Tunmee, I. Toda, K. Komatsu, S. Ohshio, H. Saitoh
Abstract:
Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photoelectron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.
Keywords: Negative bias voltage, a-C:H film, Oxygen contamination, Optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5450949 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor
Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee
Abstract:
A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.
Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884948 Natural Discovery: Electricity Potential from Vermicompost (Waste to Energy)
Authors: R. A. Karim, N. M. A. Ghani, N. N. S. Nasari
Abstract:
Wastages such as grated coconut meat, spent tea and used sugarcane had contributed negative impacts to the environment. Vermicomposting method is fully utilized to manage the wastes towards a more sustainable approach. The worms that are used in the vermicomposting are Eisenia foetida and Eudrillus euginae. This research shows that the vermicompost of wastages has voltage of electrical energy and is able to light up the Light-Emitting Diode (LED) device. Based on the experiment, the use of replicated and double compartments of the component will produce double of voltage. Hence, for conclusion, this harmless and low cost technology of vermicompost can act as a dry cell in order to reduce the usage of hazardous chemicals that can contaminate the environment.
Keywords: Wastages, vermiconpose, worm, voltage, organic cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4246947 Counterpropagation Neural Network for Solving Power Flow Problem
Authors: Jayendra Krishna, Laxmi Srivastava
Abstract:
Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430946 Mitigation of Radiation Levels for Base Transceiver Stations based on ITU-T Recommendation K.70
Abstract:
This essay presents applicative methods to reduce human exposure levels in the area around base transceiver stations in a environment with multiple sources based on ITU-T recommendation K.70. An example is presented to understand the mitigation techniques and their results and also to learn how they can be applied, especially in developing countries where there is not much research on non-ionizing radiations.
Keywords: Electromagnetic fields (EMF), human exposure limits, intentional radiator, cumulative exposure ratio, base transceiver station (BTS), radiation levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701945 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks
Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi
Abstract:
Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.
Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956944 Induction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization
Authors: C. Thanga Raj, S. P. Srivastava, Pramod Agarwal
Abstract:
This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was implemented on a test motor and the results are compared with the Simulated Annealing (SA) technique, Standard Particle Swarm Optimization (SPSO), and normal design. Some benchmark problems are used for validating QI-PSO. From the test results QI-PSO gave better results and more suitable to motor-s design optimization. Cµ code is used for implementing entire algorithms.
Keywords: Design, harmonics, induction motor, particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790943 Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement
Authors: M. Chitsazi, B. Maraghechi, M. H. Rouhani
Abstract:
Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.Keywords: Free electron laser, Prebunching, Undulator, Wiggler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463942 Improving the Voltage Level in High Voltage Direct Current Systems by Using Modular Multilevel Converter
Authors: G. Kishor Babu, B. Madhu Kiran
Abstract:
This paper presented an intend scheme of Modular-Multilevel-Converter (MMC) levels for move towering the practical conciliation flanked by the precision and divisional competence. The whole process is standard by a Thevenin-equivalent 133-level MMC model. Firstly the computation scheme of the fundamental limit imitation time step is offered to faithfully represent each voltage level of waveforms. Secondly the earlier industrial Improved Analytic Hierarchy Process (IAHP) is adopted to integrate the relative errors of all the input electrical factors interested in one complete virtual fault on each converter level. Thirdly the stable AC and DC ephemeral condition in virtual faults effects of all the forms stabilize and curve integral stand on the standard form. Finally the optimal MMC level will be obtained by the drown curves and it will give individual weights allowing for the precision and efficiency. And the competence and potency of the scheme are validated by model on MATLAB Simulink.
Keywords: Modular multilevel converter, improved analytic hierarchy process, ac and dc transient, high voltage direct current, voltage sourced converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599941 A Temperature-Insensitive Wide-Dynamic Range Positive/Negative Full-Wave Rectifier Based on Operational Trasconductance Amplifier using Commercially Available ICs
Authors: C. Chanapromma, T. Worachak, P. Silapan
Abstract:
This paper presents positive and negative full-wave rectifier. The proposed structure is based on OTA using commercially available ICs (LT1228). The features of the proposed circuit are that: it can rectify and amplify voltage signal with controllable output magnitude via input bias current: the output voltage is free from temperature variation. The circuit description merely consists of 1 single ended and 3 fully differential OTAs. The performance of the proposed circuit are investigated though PSpice. They show that the proposed circuit can function as positive/negative full-wave rectifier, where the voltage input wide-dynamic range from -5V to 5V. Furthermore, the output voltage is slightly dependent on the temperature variations.Keywords: Full-wave rectifier, Positive/negative, OTA, Electronically controllable, Wide-dynamic range
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835940 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design
Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu
Abstract:
In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).
Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode, high breakdown voltage, field plate, Baliga’s figure-of-merit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034939 SVC and DSTATCOM Comparison for Voltage Improvement in RDS Using ANFIS
Authors: U. Ramesh Babu, V. Vijaya Kumar Reddy, S. Tara Kalyani
Abstract:
This paper investigates the performance comparison of SVC (Static VAR Compensator) and DSTATCOM (Distribution Static Synchronous Compensator) to improve voltage stability in Radial Distribution System (RDS) which are efficient FACTS (Flexible AC Transmission System) devices that are capable of controlling the active and reactive power flows in a power system line by appropriately controlling parameters using ANFIS. Simulations are carried out in MATLAB/Simulink environment for the IEEE-4 bus system to test the ability of increasing load. It is found that these controllers significantly increase the margin of load in the power systems.
Keywords: SVC, DSTATCOM, voltage improvement, ANFIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383938 A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter
Authors: Bachir Belmadani, Rachid Taleb, Zinelaabidine Boudjema, Adil Yahdou
Abstract:
Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.Keywords: Flying capacitor inverter, multicarrier sinusoidal pulse width modulation, space vector modulation, total harmonic distortion, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730937 Optimization of a New Three-Phase High Voltage Power Supply for Industrial Microwaves Generators with N Magnetrons by Phase (Treated Case N=1)
Authors: M. Bassoui, M. Ferfra, M. Chraygane, M. Ould Ahmedou, N. Elghazal, A. Belhaiba
Abstract:
Currently, the High voltage power supply for microwave generators with one magnetron uses a single-phase transformer with magnetic shunt. To contribute in the development of technological innovation in industry of manufacturing of power supplies of magnetrons for microwaves, ovens for domestic or industrial use, this original work treats the optimization of a new three-phase high voltage power supply for industrial microwaves generators with N magnetrons by phase (Treated case N=1), from its modeling with Matlab-Simulink. The design of this power supply uses three π quadruple models equivalents of new three-phase transformer with magnetic shunt of each phase. Every one supplies at its output a voltage doubler cell composed of a capacitor and a diode that in its output supplies only one magnetron. In this work we will define a strategy that aims to reduce the volume of the transformer and the weight and cost of the entire system of the high voltage power supply, while respecting the conditions recommended by the manufacturer, concerning the current flowing in each magnetron: (Imax <1.2 A, IAv ≈ 300 mA).
Keywords: Optimization, Three-phase transformer, Modeling, power supply, magnetrons, Matlab Simulink, High Voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806936 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell
Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy
Abstract:
A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.
Keywords: Power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840935 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850934 Optimal SSSC Placement to ATC Enhancing in Power Systems
Authors: Sh. Javadi, A. Alijani, A.H. Mazinan
Abstract:
This paper reviews the optimization available transmission capability (ATC) of power systems using a device of FACTS named SSSC equipped with energy storage devices. So that, emplacement and improvement of parameters of SSSC will be illustrated. Thus, voltage magnitude constraints of network buses, line transient stability constraints and voltage breakdown constraints are considered. To help the calculations, a comprehensive program in DELPHI is provided, which is able to simulate and trace the parameters of SSSC has been installed on a specific line. Furthermore, the provided program is able to compute ATC, TTC and maximum value of their enhancement after using SSSC.Keywords: available transmission capability (ATC), total transmission capability (TTC), voltage constraints, stability constraints, FACTS, SSSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038933 Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications
Authors: Zubair Ahmad, M. H. Sayyad, M. Yaseen, M. Ali
Abstract:
In this work, an organic compound 5,10,15,20- Tetrakis(3,5-di-tertbutylphenyl)porphyrinatocopper(II) (TDTBPPCu) is studied as an active material for thin film electronic devices. To investigate the electrical properties of TDTBPPCu, junction of TDTBPPCu with heavily doped n-Si and Al is fabricated. TDTBPPCu film was sandwiched between Al and n-Si electrodes. Various electrical parameters of TDTBPPCu are determined. The current-voltage characteristics of the junction are nonlinear, asymmetric and show rectification behavior, which gives the clue of formation of depletion region. This behavior indicates the potential of TDTBPPCu for electronics applications. The current-voltage and capacitance-voltage techniques are used to find the different electronic parameters.Keywords: P-type, organic semiconductor, Electricalcharacteristics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352932 Earth Grid Safety Consideration: Civil Upgrade Works for an Energised Substation
Authors: M. Nassereddine, A. Hellany, M. Nagrial, J. Rizk
Abstract:
The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. Many areas are being developed and therefore require additional electrical power to comply with the demand. Substation upgrade is one of the rapid solutions to ensure the continuous supply of power to customers. This upgrade requires civil modifications to structures and fences. The civil work requires excavation and steel works that may create unsafe touch conditions. This paper presents a brief theoretical overview of the touch voltage inside and around substations and uses CDEGS software to simulate a case study.
Keywords: Earth safety, High Voltage, AC interference, Earthing Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224931 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage
Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain
Abstract:
This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.
Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6059930 Damping of Power System Oscillations by using coordinated tuning of POD and PSS with STATCOM
Authors: A. S. P.Kanojia, B. Dr.V.K.Chandrakar
Abstract:
Static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC), which can affect rapid control of reactive flow in the transmission line by controlling the generated a.c. voltage. The main aim of the paper is to design a power system installed with a Static synchronous compensator (STATCOM) and demonstrates the application of the linearised Phillips-heffron model in analyzing the damping effect of the STATCOM to improve power system oscillation stability. The proposed PI controller is designed to coordinate two control inputs: Voltage of the injection bus and capacitor voltage of the STATCOM, to improve the Dynamic stability of a SMIB system .The power oscillations damping (POD) control and power system stabilizer (PSS) and their coordinated action with proposed controllers are tested. The simulation result shows that the proposed damping controllers provide satisfactory performance in terms of improvements of dynamic stability of the system.
Keywords: Damping oscillations, FACTS, STATCOM, dynamic stability, PSS, POD, Coordination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532929 Optimal Analysis of Grounding System Design for Distribution Substation
Authors: T. Lantharthong, N. Rugthaicharoencheep, A. Phayomhom
Abstract:
This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.
Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681928 Application of Neural Networks in Power Systems; A Review
Authors: M. Tarafdar Haque, A.M. Kashtiban
Abstract:
The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, this paper introduce a brief overview in fault diagnosis, security assessment, load forecasting, economic dispatch and harmonic analyzing. Advantages and disadvantages of using NNs in above mentioned subjects and the main challenges in these fields have been explained, too.
Keywords: Neural network, power system, security assessment, fault diagnosis, load forecasting, economic dispatch, harmonic analyzing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7805927 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: Distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058926 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)
Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick
Abstract:
The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717925 Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation
Authors: Suresh Alapati, Sreehari Rao Patri, K. S. R. Krishna Prasad
Abstract:
Anultra-low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gainenhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 )A. An undershot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 )s for the output voltage undershooting case. The load regulation is of 2.77 )V/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW.
Keywords: Capacitor-less LDO, frequency compensation, Transient response, latch, self-biased differential amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4065924 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability
Authors: K. Saravanan
Abstract:
An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396923 Low Power Capacitance-to-Voltage Converter for Magnetometer Interface IC
Authors: Dipankar Nag, Choe Andrew Kunil, Kevin Chai Tshun Chuan, Minkyu Je
Abstract:
This paper presents the design and implementation of a fully integrated Capacitance-to-Voltage Converter (CVC) as the analog front-end for magnetometer interface IC. The application demands very low power solution operating in the frequency of around 20 KHz. The design adapts low power architecture to create low noise electronic interface for Capacitive Micro-machined Lorentz force magnetometer sensor. Using a 0.18-μm CMOS process, simulation results of this interface IC show that the proposed CVC can provide 33 dB closed loop gain, 20 nV/√Hz input referred noise at 20 KHz, while consuming 65 μA current from 1.8-V supply.
Keywords: Analog front end, Capacitance-to-Voltage Converter, Magnetometer, MEMS, Recycling Folded Cascode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3689922 A Floating Gate MOSFET Based Novel Programmable Current Reference
Authors: V. Suresh Babu, Haseena P. S., Varun P. Gopi, M. R. Baiju
Abstract:
In this paper a scheme is proposed for generating a programmable current reference which can be implemented in the CMOS technology. The current can be varied over a wide range by changing an external voltage applied to one of the control gates of FGMOS (Floating Gate MOSFET). For a range of supply voltages and temperature, CMOS current reference is found to be dependent, this dependence is compensated by subtracting two current outputs with the same dependencies on the supply voltage and temperature. The system performance is found to improve with the use of FGMOS. Mathematical analysis of the proposed circuit is done to establish supply voltage and temperature independence. Simulation and performance evaluation of the proposed current reference circuit is done using TANNER EDA Tools. The current reference shows the supply and temperature dependencies of 520 ppm/V and 312 ppm/oC, respectively. The proposed current reference can operate down to 0.9 V supply.
Keywords: Floating Gate MOSFET, current reference, self bias scheme, temperature independency, supply voltage independency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801