Search results for: Visual Surveillance
427 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects
Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet
Abstract:
New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.Keywords: Auditory feedback, gesture, sonification, sound perception, virtual object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966426 A Study of Semantic Analysis of LED Illustrated Traffic Directional Arrow in Different Style
Authors: Chia-Chen Wu, Chih-Fu Wu, Pey-Weng Lien, Kai-Chieh Lin
Abstract:
In the past, the most comprehensively adopted light source was incandescent light bulbs, but with the appearance of LED light sources, traditional light sources have been gradually replaced by LEDs because of its numerous superior characteristics. However, many of the standards do not apply to LEDs as the two light sources are characterized differently. This also intensifies the significance of studies on LEDs. As a Kansei design study investigating the visual glare produced by traffic arrows implemented with LEDs, this study conducted a semantic analysis on the styles of traffic arrows used in domestic and international occasions. The results will be able to reduce drivers’ misrecognition that results in the unsuccessful arrival at the destination, or in traffic accidents. This study started with a literature review and surveyed the status quo before conducting experiments that were divided in two parts. The first part involved a screening experiment of arrow samples, where cluster analysis was conducted to choose five representative samples of LED displays. The second part was a semantic experiment on the display of arrows using LEDs, where the five representative samples and the selected ten adjectives were incorporated. Analyzing the results with Quantification Theory Type I, it was found that among the composition of arrows, fletching was the most significant factor that influenced the adjectives. In contrast, a “no fletching” design was more abstract and vague. It lacked the ability to convey the intended message and might bear psychological negative connotation including “dangerous,” “forbidden,” and “unreliable.” The arrow design consisting of “> shaped fletching” was found to be more concrete and definite, showing positive connotation including “safe,” “cautious,” and “reliable.” When a stimulus was placed at a farther distance, the glare could be significantly reduced; moreover, the visual evaluation scores would be higher. On the contrary, if the fletching and the shaft had a similar proportion, looking at the stimuli caused higher evaluation at a closer distance. The above results will be able to be applied to the design of traffic arrows by conveying information definitely and rapidly. In addition, drivers’ safety could be enhanced by understanding the cause of glare and improving visual recognizability.
Keywords: LED, arrow, Kansei research, preferred imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950425 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583424 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment
Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska
Abstract:
Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.
Keywords: Accident assessment model, eye tracking, occupational safety, scaffolding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147423 Tuberculosis Modelling Using Bio-PEPA Approach
Authors: Dalila Hamami, Baghdad Atmani
Abstract:
Modelling is a widely used tool to facilitate the evaluation of disease management. The interest of epidemiological models lies in their ability to explore hypothetical scenarios and provide decision makers with evidence to anticipate the consequences of disease incursion and impact of intervention strategies.
All models are, by nature, simplification of more complex systems. Models that involve diseases can be classified into different categories depending on how they treat the variability, time, space, and structure of the population. Approaches may be different from simple deterministic mathematical models, to complex stochastic simulations spatially explicit.
Thus, epidemiological modelling is now a necessity for epidemiological investigations, surveillance, testing hypotheses and generating follow-up activities necessary to perform complete and appropriate analysis.
The state of the art presented in the following, allows us to position itself to the most appropriate approaches in the epidemiological study.
Keywords: Bio-PEPA, Cellular automata, Epidemiological modelling, multi agent system, ordinary differential equations, PEPA, Process Algebra, Tuberculosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158422 Application of a Time-Frequency-Based Blind Source Separation to an Instantaneous Mixture of Secondary Radar Sources
Authors: M. Tria, M. Benidir, E. Chaumette
Abstract:
In Secondary Surveillance Radar (SSR) systems, it is more difficult to locate and recognise aircrafts in the neighbourhood of civil airports since aerial traffic becomes greater. Here, we propose to apply a recent Blind Source Separation (BSS) algorithm based on Time-Frequency Analysis, in order to separate messages sent by different aircrafts and falling in the same radar beam in reception. The above source separation method involves joint-diagonalization of a set of smoothed version of spatial Wigner-Ville distributions. The technique makes use of the difference in the t-f signatures of the nonstationary sources to be separated. Consequently, as the SSR sources emit different messages at different frequencies, the above fitted to this new application. We applied the technique in simulation to separate SSR replies. Results are provided at the end of the paper.Keywords: Blind Source Separation, Time-Frequency Analysis, Secondary Radar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695421 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827420 Traffic Density Estimation for Multiple Segment Freeways
Authors: Karandeep Singh, Baibing Li
Abstract:
Traffic density, an indicator of traffic conditions, is one of the most critical characteristics to Intelligent Transport Systems (ITS). This paper investigates recursive traffic density estimation using the information provided from inductive loop detectors. On the basis of the phenomenological relationship between speed and density, the existing studies incorporate a state space model and update the density estimate using vehicular speed observations via the extended Kalman filter, where an approximation is made because of the linearization of the nonlinear observation equation. In practice, this may lead to substantial estimation errors. This paper incorporates a suitable transformation to deal with the nonlinear observation equation so that the approximation is avoided when using Kalman filter to estimate the traffic density. A numerical study is conducted. It is shown that the developed method outperforms the existing methods for traffic density estimation.Keywords: Density estimation, Kalman filter, speed-densityrelationship, Traffic surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837419 Identification of Vessel Class with LSTM using Kinematic Features in Maritime Traffic Control
Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi
Abstract:
Prevent abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep Long Short-Term Memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviours far from the expected one, depending on the declared type.
Keywords: maritime surveillance, artificial intelligence, behaviour analysis, LSTM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340418 Macular Ganglion Cell Inner Plexiform Layer Thinning in Patients with Visual Field Defect that Respects the Vertical Meridian
Authors: Hye-Young Shin, Chan Kee Park
Abstract:
Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.Keywords: Brain lesion, Macular ganglion cell-Inner plexiform layer, Spectral-domain optical coherence tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773417 Model Predictive Control and Proportional-Integral-Derivative Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.
Keywords: MATLAB, MPC, Model Predictive Control, PID, Proportional-Integral-Derivative, quadcopter, Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33416 Analyzing Political Cartoons in Arabic-Language Media after Trump's Jerusalem Move: A Multimodal Discourse Perspective
Authors: Inas Hussein
Abstract:
Communication in the modern world is increasingly becoming multimodal due to globalization and the digital space we live in which have remarkably affected how people communicate. Accordingly, Multimodal Discourse Analysis (MDA) is an emerging paradigm in discourse studies with the underlying assumption that other semiotic resources such as images, colours, scientific symbolism, gestures, actions, music and sound, etc. combine with language in order to communicate meaning. One of the effective multimodal media that combines both verbal and non-verbal elements to create meaning is political cartoons. Furthermore, since political and social issues are mirrored in political cartoons, these are regarded as potential objects of discourse analysis since they not only reflect the thoughts of the public but they also have the power to influence them. The aim of this paper is to analyze some selected cartoons on the recognition of Jerusalem as Israel's capital by the American President, Donald Trump, adopting a multimodal approach. More specifically, the present research examines how the various semiotic tools and resources utilized by the cartoonists function in projecting the intended meaning. Ten political cartoons, among a surge of editorial cartoons highlighted by the Anti-Defamation League (ADL) - an international Jewish non-governmental organization based in the United States - as publications in different Arabic-language newspapers in Egypt, Saudi Arabia, UAE, Oman, Iran and UK, were purposively selected for semiotic analysis. These editorial cartoons, all published during 6th–18th December 2017, invariably suggest one theme: Jewish and Israeli domination of the United States. The data were analyzed using the framework of Visual Social Semiotics. In accordance with this methodological framework, the selected visual compositions were analyzed in terms of three aspects of meaning: representational, interactive and compositional. In analyzing the selected cartoons, an interpretative approach is being adopted. This approach prioritizes depth to breadth and enables insightful analyses of the chosen cartoons. The findings of the study reveal that semiotic resources are key elements of political cartoons due to the inherent political communication they convey. It is proved that adequate interpretation of the three aspects of meaning is a prerequisite for understanding the intended meaning of political cartoons. It is recommended that further research should be conducted to provide more insightful analyses of political cartoons from a multimodal perspective.
Keywords: Multimodal discourse analysis, multimodal text, political cartoons, visual modality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551415 Networked Radar System to Increase Safety of Urban Railroad Crossing
Authors: S. Saponara, L. Fanucci, R. Cassettari, P. Ruggiero, M. Righetto
Abstract:
The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.
Keywords: Radar for safe mobility, railroad crossing, railway, transport safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090414 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*
Authors: Jin Myoung Kim, Tae Ho Cho
Abstract:
Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.
Keywords: Heuristic search, key management, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684413 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection
Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu
Abstract:
Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.Keywords: detection, intersection, mixed traffic, moving objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033412 Real Time Detection, Tracking and Recognition of Medication Intake
Authors: H. H. Huynh, J. Meunier, J.Sequeira, M.Daniel
Abstract:
In this paper, the detection and tracking of face, mouth, hands and medication bottles in the context of medication intake monitoring with a camera is presented. This is aimed at recognizing medication intake for elderly in their home setting to avoid an inappropriate use. Background subtraction is used to isolate moving objects, and then, skin and bottle segmentations are done in the RGB normalized color space. We use a minimum displacement distance criterion to track skin color regions and the R/G ratio to detect the mouth. The color-labeled medication bottles are simply tracked based on the color space distance to their mean color vector. For the recognition of medication intake, we propose a three-level hierarchal approach, which uses activity-patterns to recognize the normal medication intake activity. The proposed method was tested with three persons, with different medication intake scenarios, and gave an overall precision of over 98%.
Keywords: Activity recognition, background subtraction, tracking, medication intake, video surveillance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986411 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803410 Fe, Pb, Mn, and Cd Concentrations in Edible Mushrooms (Agaricus campestris) Grown in Abakaliki, Ebonyi State, Nigeria
Authors: N. O. Omaka, I. F. Offor, R.C. Ehiri
Abstract:
The health and environmental risk of eating mushrooms grown in Abakaliki were evaluated in terms of heavy metals accumulation. Mushroom samples were collected from four different farms located at Izzi, Amajim, Amana and Amudo and analyzed for (iron, lead, manganese and cadmium) using Bulk Scientific Atomic Absorption Spectrophotometer 205. Results indicates mean range of concentrations of the trace metals in the mushrooms were Fe (0.22-152. 03), Mn (0.74-9.76), Pb (0.01.0.80), Cd (0.61-0.82) mg/L respectively. Accumulation of Cd on the four locations under investigation was higher than the UK Government Food Science Surveillance and World Health Organization maximum recommended levels in mushroom for human consumption. The Fe and Mn contaminants of Amudo were significant and show the impact of anthropogenic/atmospheric pollution. The potential sources of the heavy metals in the mushrooms were from urban waste, dust from mining and quarrying activities, natural geochemistry of the area, and use of inorganic fertilizers
Keywords: Agaricus campestris, edible, health implication heavy metal, mushroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564409 A Real-Time Image Change Detection System
Authors: Madina Hamiane, Amina Khunji
Abstract:
Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563408 Hot-Spot Blob Merging for Real-Time Image Segmentation
Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda
Abstract:
One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506407 Efficacy of Biofeedback-Assisted Pelvic Floor Muscle Training on Postoperative Stress Urinary Incontinence
Authors: Asmaa M. El-Bandrawy, Afaf M. Botla, Ghada E. El-Refaye, Hassan O. Ghareeb
Abstract:
Background: Urinary incontinence is a common problem among adults. Its incidence increases with age and it is more frequent in women. Pelvic floor muscle training (PFMT) is the first-line therapy in the treatment of pelvic floor dysfunction (PFD) either alone or combined with biofeedback-assisted PFMT. The aim of the work: The purpose of this study is to evaluate the efficacy of biofeedback-assisted PFMT in postoperative stress urinary incontinence. Settings and Design: A single blind controlled trial design was. Methods and Material: This study was carried out in 30 volunteer patients diagnosed as severe degree of stress urinary incontinence and they were admitted to surgical treatment. They were divided randomly into two equal groups: (Group A) consisted of 15 patients who had been treated with post-operative biofeedback-assisted PFMT and home exercise program (Group B) consisted of 15 patients who had been treated with home exercise program only. Assessment of all patients in both groups (A) and (B) was carried out before and after the treatment program by measuring intra-vaginal pressure in addition to the visual analog scale. Results: At the end of the treatment program, there was a highly statistically significant difference between group (A) and group (B) in the intra-vaginal pressure and the visual analog scale favoring the group (A). Conclusion: biofeedback-assisted PFMT is an effective method for the symptomatic relief of post-operative female stress urinary incontinence.
Keywords: Stress urinary incontinence, pelvic floor muscles, pelvic floor exercises, biofeedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419406 Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging
Authors: Omowunmi E. Isafiade, Isaac O. Osunmakinde, Antoine B. Bagula
Abstract:
Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.Keywords: Drivable Region Detection, Kinect Sensor, Robots' Perception, SRM, Underground Terrains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838405 Surveillance of Super-Extended Objects: Bimodal Approach
Authors: Andrey V. Timofeev, Dmitry Egorov
Abstract:
This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.
Keywords: Bimodal processing, C-OTDR monitoring system, LPboost, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069404 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 404403 Development of A Jacobean Model for A 4-Axes Indigenously Developed SCARA System
Authors: T.C.Manjunath, C. Ardil
Abstract:
This paper deals with the development of a Jacobean model for a 4-axes indigenously developed scara robot arm in the laboratory. This model is used to study the relation between the velocities and the forces in the robot while it is doing the pick and place operation.
Keywords: SCARA, Jacobean, Tool Configuration Vector, Computer Control , Visual Basic , Interfacing , Drivers,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261402 Evaluation and Analysis of Lean-Based Manufacturing Equipment and Technology System for Jordanian Industries
Authors: Mohammad D. AL-Tahat, Shahnaz M. Alkhalil
Abstract:
International markets driven forces are changing continuously, therefore companies need to gain a competitive edge in such markets. Improving the company's products, processes and practices is no longer auxiliary. Lean production is a production management philosophy that consolidates work tasks with minimum waste resulting in improved productivity. Lean production practices can be mapped into many production areas. One of these is Manufacturing Equipment and Technology (MET). Many lean production practices can be implemented in MET, namely, specific equipment configurations, total preventive maintenance, visual control, new equipment/ technologies, production process reengineering and shared vision of perfection.The purpose of this paper is to investigate the implementation level of these six practices in Jordanian industries. To achieve that a questionnaire survey has been designed according to five-point Likert scale. The questionnaire is validated through pilot study and through experts review. A sample of 350 Jordanian companies were surveyed, the response rate was 83%. The respondents were asked to rate the extent of implementation for each of practices. A relationship conceptual model is developed, hypotheses are proposed, and consequently the essential statistical analyses are then performed. An assessment tool that enables management to monitor the progress and the effectiveness of lean practices implementation is designed and presented. Consequently, the results show that the average implementation level of lean practices in MET is 77%, Jordanian companies are implementing successfully the considered lean production practices, and the presented model has Cronbach-s alpha value of 0.87 which is good evidence on model consistency and results validation.Keywords: Lean Production, SME applications, Visual Control, New equipment/technologies, Specific equipment configurations, Jordan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297401 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.
Keywords: Human Motion Capture, Computer Vision, Vision based, Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491400 Performance Analysis of Routing Protocol for WSN Using Data Centric Approach
Authors: A. H. Azni, Madihah Mohd Saudi, Azreen Azman, Ariff Syah Johari
Abstract:
Sensor Network are emerging as a new tool for important application in diverse fields like military surveillance, habitat monitoring, weather, home electrical appliances and others. Technically, sensor network nodes are limited in respect to energy supply, computational capacity and communication bandwidth. In order to prolong the lifetime of the sensor nodes, designing efficient routing protocol is very critical. In this paper, we illustrate the existing routing protocol for wireless sensor network using data centric approach and present performance analysis of these protocols. The paper focuses in the performance analysis of specific protocol namely Directed Diffusion and SPIN. This analysis reveals that the energy usage is important features which need to be taken into consideration while designing routing protocol for wireless sensor network.Keywords: Data Centric Approach, Directed Diffusion, SPIN WSN Routing Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536399 Spatial Indeterminacy: Destabilization of Dichotomies in Modern and Contemporary Architecture
Authors: Adrian Lo
Abstract:
Since the advent of modern architecture, notions of free plan and transparency have proliferated well into current trends. The movement’s notion of a spatially homogeneous, open and limitless ‘free plan’ contrasts with the spatially heterogeneous ‘series of rooms’ defined by load bearing walls, which in turn triggered new notions of transparency created by vast expanses of glazed walls. Similarly, transparency was also dichotomized as something that was physical or optical, as well as something conceptual, akin to spatial organization. As opposed to merely accepting the duality and possible incompatibility of these dichotomies, this paper seeks to ask how can space be both literally and phenomenally transparent, as well as exhibit both homogeneous and heterogeneous qualities? This paper explores this potential destabilization or blurring of spatial phenomena by dissecting the transparent layers and volumes of a series of selected case studies to investigate how different architects have devised strategies of spatial ambiguity and interpenetration. Projects by Peter Eisenman, Sou Fujimoto, and SANAA will be discussed and analyzed to show how the superimposition of geometries and spaces achieve different conditions of layering, transparency, and interstitiality. Their particular buildings will be explored to reveal various innovative kinds of spatial interpenetration produced through the articulate relations of the elements of architecture, which challenge conventional perceptions of interior and exterior whereby visual homogeneity blurs with spatial heterogeneity. The results show how spatial conceptions such as interpenetration and transparency have the ability to subvert not only inside-outside dialectics, but could also produce multiple degrees of interiority within complex and indeterminate spatial dimensions in constant flux as well as present alternative forms of social interaction.
Keywords: interpenetration, literal and phenomenal transparency, spatial heterogeneity, visual homogeneity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533398 Learning Spatio-Temporal Topology of a Multi-Camera Network by Tracking Multiple People
Authors: Yunyoung Nam, Junghun Ryu, Yoo-Joo Choi, We-Duke Cho
Abstract:
This paper presents a novel approach for representing the spatio-temporal topology of the camera network with overlapping and non-overlapping fields of view (FOVs). The topology is determined by tracking moving objects and establishing object correspondence across multiple cameras. To track people successfully in multiple camera views, we used the Merge-Split (MS) approach for object occlusion in a single camera and the grid-based approach for extracting the accurate object feature. In addition, we considered the appearance of people and the transition time between entry and exit zones for tracking objects across blind regions of multiple cameras with non-overlapping FOVs. The main contribution of this paper is to estimate transition times between various entry and exit zones, and to graphically represent the camera topology as an undirected weighted graph using the transition probabilities.Keywords: Surveillance, multiple camera, people tracking, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651