Search results for: MPC
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34

Search results for: MPC

34 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality

Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie

Abstract:

Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.

Keywords: Millet protein concentrate, Functional properties, Structural properties, High intensity ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
33 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter

Authors: Roshan Sharma, Bjørn Glemmestad

Abstract:

In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.

Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
32 A Microcontroller Implementation of Constrained Model Predictive Control

Authors: Amira Kheriji Abbes, Faouzi Bouani, Mekki Ksouri

Abstract:

Model Predictive Control (MPC) is an established control technique in a wide range of process industries. The reason for this success is its ability to handle multivariable systems and systems having input, output or state constraints. Neverthless comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprisers as well as a transformer of organizations and markets. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In this paper, we propose an efficient firmware for the implementation of constrained MPC in the performed STM32 microcontroller using interior point method. Indeed, performances study shows good execution speed and low computational burden. These results encourage to develop predictive control algorithms to be programmed in industrial standard processes. The PID anti windup controller was also implemented in the STM32 in order to make a performance comparison with the MPC. The main features of the proposed constrained MPC framework are illustrated through two examples.

Keywords: Embedded software, microcontroller, constrainedModel Predictive Control, interior point method, PID antiwindup, Keil tool, C/Cµ language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
31 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor

Authors: Abdelsalam A. Ahmed

Abstract:

Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is derived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.

Keywords: Permanent magnet synchronous motor, mode predictive control, optimization of DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3121
30 Model Predictive Control and Proportional-Integral-Derivative Control of Quadcopters: A Comparative Analysis

Authors: Anel Hasić, Naser Prljača

Abstract:

In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.

Keywords: MATLAB, MPC, Model Predictive Control, PID, Proportional-Integral-Derivative, quadcopter, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94
29 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4584
28 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: Adaptive Cruise Control, Centralized Server, Networked Model Predictive Control, String Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
27 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
26 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of  Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
25 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.

Keywords: Model Predictive Control, Space Vector Pulse Width Modulation, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4553
24 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize the TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of a boost converter (BC), maximum power point tracking (MPPT) control, and a three-leg voltage source inverter (VSI). The operational model of VSI is used to synthesize the sinusoidal current and track the reference. The model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation results show simplicity and accuracy, as well as reliability of the model.

Keywords: Model predictive control, three phase voltage source inverter, PV system, Matlab/Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3800
23 Model Predictive Control of Gantry Crane with Input Nonlinearity Compensation

Authors: Steven W. Su , Hung Nguyen, Rob Jarman, Joe Zhu, David Lowe, Peter McLean, Shoudong Huang, Nghia T. Nguyen, Russell Nicholson, Kaili Weng

Abstract:

This paper proposed a nonlinear model predictive control (MPC) method for the control of gantry crane. One of the main motivations to apply MPC to control gantry crane is based on its ability to handle control constraints for multivariable systems. A pre-compensator is constructed to compensate the input nonlinearity (nonsymmetric dead zone with saturation) by using its inverse function. By well tuning the weighting function matrices, the control system can properly compromise the control between crane position and swing angle. The proposed control algorithm was implemented for the control of gantry crane system in System Control Lab of University of Technology, Sydney (UTS), and achieved desired experimental results.

Keywords: Model Predictive Control, Control constraints, Input nonlinearity compensation, Overhead gantry crane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
22 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
21 Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

Authors: T. H. Lee, J. H. Park, S. M. Lee, S. C. Lee

Abstract:

In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of load current is the significant one of these for good performance of the SOFC system. In order to keep the constant stack terminal voltage by changing load current, the nonlinear model predictive control (MPC) is proposed in this paper. After primary control method is designed to guarantee the fuel utilization as a proper constant, a nonlinear model predictive control based on the Wiener model is developed to control the stack terminal voltage of the SOFC system. Simulation results verify the possibility of the proposed Wiener model and MPC method to control of SOFC system.

Keywords: SOFC, model predictive control, Wiener model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
20 A Microcontroller Implementation of Model Predictive Control

Authors: Amira Abbes Kheriji, Faouzi Bouani, Mekki Ksouri, Mohamed Ben Ahmed

Abstract:

Model Predictive Control (MPC) is increasingly being proposed for real time applications and embedded systems. However comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprises as well as a transformer of organizations and markets. Recently, advances in microelectronics and software allow such technique to be implemented in embedded systems. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In fact in this paper, we propose an efficient framework for implementation of Generalized Predictive Control (GPC) in the performed STM32 microcontroller. The STM32 keil starter kit based on a JTAG interface and the STM32 board was used to implement the proposed GPC firmware. Besides the GPC, the PID anti windup algorithm was also implemented using Keil development tools designed for ARM processor-based microcontroller devices and working with C/Cµ langage. A performances comparison study was done between both firmwares. This performances study show good execution speed and low computational burden. These results encourage to develop simple predictive algorithms to be programmed in industrial standard hardware. The main features of the proposed framework are illustrated through two examples and compared with the anti windup PID controller.

Keywords: Embedded systems, Model Predictive Control, microcontroller, Keil tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5534
19 Adaptive MPC Using a Recursive Learning Technique

Authors: Ahmed Abbas Helmy, M. R. M. Rizk, Mohamed El-Sayed

Abstract:

A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.

Keywords: Adaptive control, model predictive control, dynamic matrix control, online model identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
18 A New Stabilizing GPC for Nonminimum Phase LTI Systems Using Time Varying Weighting

Authors: Mahdi Yaghobi, Mohammad Haeri

Abstract:

In this paper, we show that the stability can not be achieved with current stabilizing MPC methods for some unstable processes. Hence we present a new method for stabilizing these processes. The main idea is to use a new time varying weighted cost function for traditional GPC. This stabilizes the closed loop system without adding soft or hard constraint in optimization problem. By studying different examples it is shown that using the proposed method, the closed-loop stability of unstable nonminimum phase process is achieved.

Keywords: GPC, Stability, Varying Weighting Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
17 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
16 Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model predictive control, PID controller, Two degrees of freedom, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
15 Supply Air Pressure Control of HVAC System Using MPC Controller

Authors: P. Javid, A. Aeenmehr, J. Taghavifar

Abstract:

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Keywords: Air conditioning system, GPC, dead time, Air supply control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
14 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Sliding Mode Control, Model Predictive Control, Integral Action, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
13 A Model Predictive Control and Time Series Forecasting Framework for Supply Chain Management

Authors: Philip Doganis, Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

Model Predictive Control has been previously applied to supply chain problems with promising results; however hitherto proposed systems possessed no information on future demand. A forecasting methodology will surely promote the efficiency of control actions by providing insight on the future. A complete supply chain management framework that is based on Model Predictive Control (MPC) and Time Series Forecasting will be presented in this paper. The proposed framework will be tested on industrial data in order to assess the efficiency of the method and the impact of forecast accuracy on overall control performance of the supply chain. To this end, forecasting methodologies with different characteristics will be implemented on test data to generate forecasts that will serve as input to the Model Predictive Control module.

Keywords: Forecasting, Model predictive control, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
12 The Establishment of Probabilistic Risk Assessment Analysis Methodology for Dry Storage Concrete Casks Using SAPHIRE 8

Authors: J. R. Wang, W. Y. Cheng, J. S. Yeh, S. W. Chen, Y. M. Ferng, J. H. Yang, W. S. Hsu, C. Shih

Abstract:

To understand the risk for dry storage concrete casks in the cask loading, transfer, and storage phase, the purpose of this research is to establish the probabilistic risk assessment (PRA) analysis methodology for dry storage concrete casks by using SAPHIRE 8 code. This analysis methodology is used to perform the study of Taiwan nuclear power plants (NPPs) dry storage system. The process of research has three steps. First, the data of the concrete casks and Taiwan NPPs are collected. Second, the PRA analysis methodology is developed by using SAPHIRE 8. Third, the PRA analysis is performed by using this methodology. According to the analysis results, the maximum risk is the multipurpose canister (MPC) drop case.

Keywords: PRA, Dry storage, concrete cask, SAPHIRE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
11 Performance Evaluation of One and Two Dimensional Prime Codes for Optical Code Division Multiple Access Systems

Authors: Gurjit Kaur, Neena Gupta

Abstract:

In this paper, we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension, i.e. time slots, whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research, we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for Optical Code Division Multiple Access (OCDMA) system on a single platform. Analysis shows that 2D prime code supports lesser number of active users than 1D codes, but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.

Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
10 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: Virtual active power filter, V2G technology, model predictive control, electric vehicle, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
9 Identification of a PWA Model of a Batch Reactor for Model Predictive Control

Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic

Abstract:

The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.

Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
8 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
7 Modelling Conditional Volatility of Saving Rate by a Time-Varying Parameter Model

Authors: Katleho D. Makatjane, Kalebe M. Kalebe

Abstract:

The present paper used time-varying parameters which are based on the score function of a probability density at time t to model volatility of saving rate. We used a scaled likelihood function to update the parameters of the model overtime. Our results revealed high diligence of time-varying since the location parameter is greater than zero. Furthermore, we discovered a leptokurtic condition on saving rate’s distribution. Kapetanios, Shin-Shell Nonlinear Augmented Dickey-Fuller (KSS-NADF) test showed that the saving rate has a nonlinear unit root; therefore, it can be modeled by a generalised autoregressive score (GAS) model. Additionally, value at risk (VaR) and conditional tail expectation (CTE) indicate that 99% of the time people in Lesotho are saving more than spending. This puts the economy in high risk of not expanding. Therefore, the monetary policy committee (MPC) of Lesotho should revise their monetary policies towards this high saving rates risk.

Keywords: Generalized autoregressive score, time-varying, saving rate, Lesotho.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
6 Investigation of Tbilisi City Atmospheric Air Pollution with PM in Usual and Emergency Situations Using the Observational and Numerical Modeling Data

Authors: N. Gigauri, V. Kukhalashvili, V. Sesadze, A. Surmava, L. Intskirveli

Abstract:

Pollution of the Tbilisi atmospheric air with PM2.5 and PM10 in usual and pandemic situations by using the data of 5 stationary observation points is investigated. The values of the statistical characteristic parameters of PM in the atmosphere of Tbilisi are analyzed and trend graphs are constructed. By means of analysis of pollution levels in the quarantine and usual periods the proportion of vehicle traffic in pollution of city is estimated. Experimental measurements of PM2.5, PM10 in the atmosphere have been carried out in different districts of the city and map of the distribution of their concentrations were constructed. It is shown that maximum pollution values are recorded in the city center and along major motorways. It is shown that the average monthly concentrations vary in the range of 0.6-1.6 Maximum Permissible Concentration (MPC). Average daily values of concentration vary at 2-4 days intervals. The distribution of PM10 generated as a result of traffic is numerical modeled. The modeling results are compared with the observation data.

Keywords: Air pollution, numerical modeling, PM2.5, PM10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
5 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization

Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman

Abstract:

The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.

Keywords: Preview control, walking, stabilization, humanoid robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620