
 

 

 
Abstract—In the domain of autonomous or piloted flights, the 

accurate control of quadrotor trajectories is of paramount significance 
for large numbers of tasks. These adaptable aerial platforms find 
applications that span from high-precision aerial photography and 
surveillance to demanding search and rescue missions. Among the 
fundamental challenges confronting quadrotor operation is the demand 
for accurate following of desired flight paths. To address this control 
challenge, among others, two celebrated well-established control 
strategies have emerged as noteworthy contenders: Model Predictive 
Control (MPC) and Proportional-Integral-Derivative (PID) control. In 
this work, we focus on the extensive examination of MPC and PID 
control techniques by using comprehensive simulation studies in 
MATLAB/Simulink. Intensive simulation results demonstrate the 
performance of the studied control algorithms. 
 

Keywords—MATLAB, MPC, Model Predictive Control, PID, 
Proportional-Integral-Derivative, quadcopter, Simulink. 

I. INTRODUCTION 

quadcopter, also known as a quadrotor, is a type of 
helicopter that features four rotors. These rotors are 

oriented with their blades pointing upward and positioned in a 
square formation, ensuring they are equidistant from the center 
of mass of the quadcopter. The quadcopter's movement and 
flight control [1] are achieved by precisely adjusting the angular 
speed of these rotors, which are driven by electric motors. This 
design allows for agile and stable flight by altering the 
rotational speed of individual rotors, providing control over 
pitch, roll, yaw, and vertical motion.  

Controlling a quadcopter presents a particularly complex and 
intriguing challenge, as highlighted in [2] and [3]. This 
complexity arises from the fact that quadcopters possess six 
degrees of freedom, consisting of three translational and three 
rotational axes, while being equipped with only four 
independent inputs or actuators, namely the rotors. This 
fundamental configuration renders quadcopters highly non-
linear, multivariable, and inherently unstable systems. 

Furthermore, one of the distinctive challenges faced when 
working with quadcopters is their minimal friction with the 
environment, unlike land vehicles. Because of this, they must 
generate their own damping forces to decelerate, stop, and 
maintain stability. In combination, these factors create a 
fascinating and intricate control and management problem 
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specific to quadcopters, as discussed in [4] and [5]. Addressing 
these challenges requires advanced control strategies and 
algorithms to ensure safe and stable flight and precise 
maneuvering. 

In order to improve quadrotor (quadcopter) tracking 
performance while taking environmental factors into account, 
research studies have introduced controllers such as Linear 
Quadratic Regulator (LQR), PID, Feedback Linearization 
Control (FLC), Backstepping, MPC, Sliding Mode Control 
(SMC), Linear Quadratic Gaussian (LQR), neural network, 
fuzzy logic, robust, adaptive, etc. These controllers are divided 
into three categories: linear, nonlinear and learning-based 
controllers [6]-[9]. 

MPC is a comprehensive category of automatic control 
system design methods. It operates by utilizing predictions of 
the process response in the future, often referred to as the 
"prediction horizon" [10], to determine the appropriate control 
signal for the process. This control signal is chosen to drive the 
system's response in such a way, that it tracks the desired 
process output. The fundamental concept behind MPC is 
straightforward and intuitive: formulate a mathematically 
defined problem to adjust the system's behavior in the future, 
ensuring it matches the desired or intended behavior. By 
considering predictions of how the system will evolve, MPC 
enables the optimization of control inputs to meet specific 
performance objectives, making it a powerful and versatile 
control strategy used in various fields, including engineering, 
robotics, and process control.  

The prediction horizon of MPC is not infinite but extends 
only over a finite time period into the future. This finite 
prediction horizon introduces numerous theoretical challenges, 
particularly in the analysis of the stability of the resulting 
control system. These challenges have continued to be a source 
of ongoing theoretical research to this day.  

Okasha et al. [11] demonstrate that all three controllers (PID, 
LQR and MPC) demonstrate similar tracking performance in 
simulations and experiments. Saraf et al. [12] indicate that the 
PID controller, requiring six feedback loops, is computationally 
more complex than the single control loop in the case of an LQR 
controller. The LQR controller is better suited for a quadrotor 
(quadcopter) control mechanism than the classical PID 
controller in terms of output, complexity and computation time. 
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Khatoon et al. [13] have explored how PID controllers give 
better stability by pushing the closed-loop poles to the negative 
side of the s-plane as compared to LQR controllers. Yavuz et 
al. [14] tackle the quadcopter control’s problem by proposing 
an adaptive controller that is a hybrid of both PID and LQR 
controllers. Nair et al. [15] present results on a PID controller 
coupled with a Kalman filter being applied to UAVs. Argentim 
et al. [16] work on using LQR control to tune a PID controller, 
combining the control techniques to manage the quadcopter. 
Prljača and Bjelić [5] present a decentralized robust adaptive 
controller for UAVs, capable of overcoming propeller faults. 

In [17], PD, LQR and MPC controllers have been considered 
on a quaternion orientation-based quadcopter platform. This 
study compares the performance of controllers based on 
trajectory tracking and control efforts through simulations, and 
infers suitable environments for different controllers. Based on 
the results, MPC is a suitable controller for quadcopter 
platforms in outdoor applications due to its disturbance 
rejection capacity. In contrast, PD and LQR can be considered 
for indoor applications where disturbance is very negligible. 

One practical consideration in implementing MPC is the 
relatively large computational requirements, especially when 
performing real-time computations. This limitation can restrict 
the use of MPC to slower processes or systems that operate with 
sufficiently large sampling intervals. For instance, MPC was 
initially applied in fields such as chemical processes, which 
often exhibit slower dynamics and can accommodate the 
computational demands of MPC. However, in recent years, 
efforts have been made to adapt and optimize MPC for faster 
systems and real-time applications, expanding its scope of use 
to a wider range of processes and industries. In [23], MPC 
implementation on microcontroller unit (MCU) is discussed.  

This paper presents the development of a quadcopter position 
control system employing MPC. Following the introduction, 
the first section includes the formulation of a comprehensive 
nonlinear model to describe the quadcopter's dynamics within a 
three-dimensional spatial framework. This nonlinear model is 
then subject to linearization, centered around an equilibrium 
point, commonly the hovering state. Subsequently, the 
continuous-time linear model is discretized to accommodate 
discrete time intervals. 

The heart of this approach lies in the formulation of an 
iterative optimization problem based on the discretized system 
model. This problem aims to identify optimal control signals 
within a predefined prediction horizon. The objective is to 
ensure that the quadcopter's future behavior closely adheres to 
desired reference trajectories and overall objectives. 

A pivotal aspect of this study is the comparative analysis 
conducted to assess the effectiveness of the newly developed 
closed-loop position control system. This analysis entails a 
thorough evaluation of the system's performance, stability, and 
robustness. It is conducted in direct comparison with a control 
system implementing a PID controller. 

Multiple distinct scenarios are scrutinized in depth to 
comprehensively appraise the respective merits and limitations 

of each control method. 
In summary, this paper offers a comprehensive and 

rigorously technical framework for quadcopter position control. 
It emphasizes the unique advantages presented by MPC, 
particularly in situations characterized by abrupt changes in 
reference positions. The methodical approach exhibited in this 
study underscores the practicality and efficacy of implementing 
MPC to effectively address the intricate control challenges 
intrinsic to quadcopter systems.  

II. MATHEMATICAL MODEL OF QUADCOPTER  

A. Non-Linear Model 

By taking into account the position and translational velocity 
of the quadcopter, along with its orientation and angular 
velocity, it is possible to derive a nonlinear model in the state 
space [18]: 

 

𝜉ሶ=f(𝜉, 𝑢ሻ                         (1) 
 

where the vector state ξ is defined as: ξ ൌ

ൣxሶ , yሶ , zሶ , q, qଵ, qଶ, qଷ, ω୶, ω୷, ω, x, y, z൧


 and the input vector u is a 
non-linear function of the rotor angular velocities u ൌ
ሾuଵ, uଶ, uଷ, uସሿ, where u ൌ hሺωሻ. 

Let x, y, and z represent the center-of-mass position in an 
inertial coordinate system. The time derivatives of x, y, and z, 
denoted as x,ሶ y,ሶ zሶ  respectively, represent the quadcopter's 
velocity. Q0, q1, q2, and q3 denote the quaternions representing 
the quadcopter's orientation. The angular velocity elements of 
the quadcopter, expressed in the body frame, are represented by 
𝞈x, 𝞈y, and 𝞈z. The mass of the quadcopter is denoted by m, 
and its moments of inertia about the body axes are represented 
by Jx, Jy, and Jz. 

Quadcopter rotor angular speeds are denoted as 𝞈1, 𝞈2, 𝞈3, 
and 𝞈4. It is worth noting that the quadcopter configuration is 
as shown in Fig. 1, with adjacent rotors rotating in opposite 
directions.  

To simplify the analysis, we define the following set of 
artificial control input variables: 

 



uଵ
uଶ
uଷ
uସ

 ൌ

⎣
⎢
⎢
⎢
⎡
ωଵ

ଶ

ωଶ
ଶ

ωଷ
ଶ

ωସ
ଶ⎦

⎥
⎥
⎥
⎤

൦

b b b b
0 b 0 െb
b
d

0
െd

െb 0
d െd

൪      (2) 

 
where b represents the aerodynamic lift or thrust factor, and d 
represents the aerodynamic moment of drag factor applied to 
the rotors.  

These factors are crucial in understanding and modeling the 
quadcopter's aerodynamic behavior and control. In (2), uଵ is the 
sum of all rotor trust forces and thus matches the resulting lift. 
The variables uଶ and uଷ correspond to those forces resulting 
from a speed difference of two opposite rotating motors, 
leading to roll and pitch movements. The last virtual input uସ 
can be interpreted as the yaw moment. 
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Fig. 1 Mapping nonlinear data to a higher dimensional feature space 
 

According to the formulations presented in [18] and [19], the 
translation acceleration is obtainable as: 

 

ቈ
xሷ
yሷ
zሷ

 ൌ

⎣
⎢
⎢
⎡ െ2ሺqଵqଷ  qqଶሻ ୳భ

୫

െ2ሺqଶqଷ  qqଵሻ
୳భ

୫

ωଵ െ ωଶ  ωଷ െ ωସ െ ሺq
ଶ െ qଵ

ଶ െ qଶ
ଶ  qଷ

ଶሻ ୳భ

୫⎦
⎥
⎥
⎤
  (3) 

 
Angular acceleration  ωሷ  can be stated as: 
 


ωሷ ୶
ωሷ ୷
ωሷ 

 ൌ

⎣
⎢
⎢
⎢
⎡ω୷ω

౯ି

౮
െ

౨

౮
ω୷ሺωଵ െ ωଶ  ωଷ െ ωସሻ 



౮
uଶ

ω୶ω
ି౮

౯
െ ౨

౯
ω୶ሺωଵ െ ωଶ  ωଷ െ ωସሻ  

౯
uଷ

ω୶ω୷
ିౕ




ଵ


uସ ⎦

⎥
⎥
⎥
⎤

  (4) 

 
where Jr is the inertia factor of the rotors (which are assumed as 
equal between all rotors), and L stands for the lengths of the 
lever between the quadcopter’s center-of-mass and the four 
motors (which are also assumed as equal). 

The attitude kinematics can be expressed via quaternion 
derivates as follows: 

 

൦

qሶ 
qሶ ଵ
qሶ ଶ
qሶ ଷ

൪ ൌ ଵ

ଶ
൦

q െqଵ െqଶ െqଷ

qଵ q െqଷ qଶ

qଶ qଷ q െqଵ

qଷ െqଶ qଵ q

൪ ൦

0
ω୶
ω୷
ω

൪      (5) 

 
Therefore, we define the total 13-dimensional state vector of 

the six degrees-of freedom quadcopter dynamics as:  
 

ξ ൌ ൣxሶ , yሶ , zሶ , q, qଵ, qଶ, qଷ, ω୶, ω୷, ω, x, y, z൧

    (6) 

 
The following system summarizes (3)-(5) merely in terms of 

𝜉. 

𝛏ሶ ൌ
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⎥
⎥
⎥
⎤

      (7) 

 
where gሺuሻ represents a linear combination of the angular 
velocities of a quadcopter's rotors and it is defined as: 
 

gሺuሻ ൌ ωଵ െ ωଶ  ωଷ െ ωସ       (8) 

B. Linearized Model 

For the development of the control system, the nonlinear 
model can be linearized by approximating selected operating 
points. 

General, for a non-linear system 𝜉ሶ ൌ 𝑓ሺ𝜉, 𝑢ሻ and the selected 
operating point (𝜉r,ur) the linearized system can be written in a 
linear time-invariant form: 

 

∆ξሶ ൌ A∆ξ  B∆u           (9) 
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where ∆𝜉 ൌ 𝜉 െ 𝜉 𝑎𝑛𝑑 ∆𝑢 ൌ 𝑢 െ 𝑢, and matrices A and B 
are calculated as: 
 

A ൌ ப

பஞ
ቚ

ሺஞ౨,୳౨ሻ
 B ൌ ப

ப୳
ቚ

ሺஞ౨,୳౨ሻ
       (10) 

 
In the case of a quadcopter, a common point for linearization 

is during hovering, where the condition u1 = mg holds. This 
condition allows us to derive an expression for the rotor speeds 
as follows: 

 

ω୧ ൌ ඥmg/ሺ4bሻ          (11) 

III. SOFTWARE SOLUTION 

A. MPC Controller for Trajectory Tracking Control of 
Quadcopter 

The initial step in implementing MPC is to compile the 
quadcopter parameters, as outlined in Table I. This step 
involves gathering and organizing the necessary data to develop 
and set up the MPC control system for the quadcopter. 

Following the compilation of quadcopter parameters as 
outlined in Table I, the next crucial step is the initialization of 
Euler angles and their conversion into quaternions using the 
MATLAB function 'euler2quaternion’. It is essential to 
establish the hovering state at 0 meters above the ground (with 

the z-axis pointing down) and then transform the hover input 
accordingly. Subsequently, one can proceed to linearize the 
system around the hovering state to obtain the state-space 
matrices. Once these initial settings and linearization are 
completed, the controller can be simulated considering the 
specified parameters and constraints [20].  

 
TABLE I 

INITIAL VALUES OF QUADCOPTER PARAMETERS  

Parameter Variable Value Unit 

Mass QUAD.MASS 0.58 kg 

Lever length QUAD.LEVER_LENGTH 0.25 m 

Roll inertia QUAD.ROLL_INTERIA 0.01 kgm2 

Pitch inertia QUAD.PITCH_INTERIA 0.01 kgm2 

Yaw inertia QUAD.YAW_INTERIA 0.02 kgm2 

Rotor inertia QUAD.ROTOR_INTERIA 3.8e-5 kgm2 

Drag factor QUAD.DRAG_FACTOR 2.82e-7 kgm2 

Thrust factor QUAD.THRUST_FACTOR 1.55e-5 kgm2 

Gravity QUAD.GRAVITY 9.81 ms2 

Mass QUAD.MASS 0.58 kg 

Roll inertia QUAD.ROLL_INTERIA 0.01 kgm2 

Lever length QUAD.LEVER_LENGTH 0.25 m 

 

This MPC controller will play a pivotal role in the 
quadcopter's control and stabilization during various flight 
scenarios. The Simulink model for the MPC controller is shown 
in Fig. 2. 

 

 

Fig. 2 Simulink MPC quadcopter model for real system 
 

The input to the system is the MATLAB/Simulink ‘ref’ 
block, which consists of quadcopter positions (x,y,z), as shown 
in Fig. 3. 

 

 

Fig. 3 System input 
 

The optimization problem was formulated using YALMIP 
[21], and the MATLAB function ´quadprog´ [22] was 

employed to solve it. This combination of tools allowed 
efficient formulation and solution of the optimization problem, 
which is a fundamental aspect of implementing the MPC 
controller for the quadcopter. 

The parameters for the regulator are provided in Table II. 
These parameters play a significant role in determining the 
behavior and performance of the quadcopter's control system.  

 
TABLE II 

MPC PARAMETERS 

Parameter Value Unit Description 

N 10 - Prediction horizon 

Qx, Qy, Qz 1 1/m2 Position tracking error weight 

R1, R2, R3 0.1 1/N2 The difficulty of using control forces 

R4 0.1 1/(Nm)2 The difficulty of using the steering torque 

TS 1 s Sampling time 
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TABLE III 
MPC CONSTRAINTS 

𝑢 Variable 𝑢௫ 

1N  uଵ  15N 

-2N  uଶ, uଷ  2N 

-0.05 Nm  uସ  0.05 Nm 

 

The matrices Q and R are diagonal, with the elements 
specified for each. This structure is commonly used in control 
design to weigh the importance of state variables and control 
inputs. Additionally, it is important to note that control inputs 
are constrained within the values presented in Table III. These 
constraints are essential for ensuring safe and effective control 

of the quadcopter while taking into account practical 
limitations. 

B. PID Controller for Trajectory Tracking Control of 
Quadcopter 

For the purpose of comparing the control system with the 
PID controller, the simulation model as described in [5] was 
employed. For the PID controller, the same parameters as those 
used for the MPC controller (following the same initial 
procedure) were utilized. The Simulink model for the PID 
controller is illustrated in Fig. 4. This setup enables a direct 
comparison between the MPC and PID control strategies for the 
quadcopter. 

 

 

Fig. 4 Simulink PID quadcopter model for real system 
 

IV. RESULTS AND DISCUSSION 

The control of the quadcopter is governed by its position (x, 
y, z) and constraints on the attainable control signals. The study 
of both MPC and PID controllers involved two distinct cases: 
 Step Response: This case focuses on analyzing the 

behavior and performance of the controllers when 
subjected to a step input, typically used to evaluate the 
system's response to sudden changes in references or 
disturbances. 

 Response with Uncertain System Parameters: In this case, 
the controllers are tested under conditions where the model 
parameters may not accurately represent the physical 
system. This scenario assesses the controllers' robustness 
and their ability to handle deviations or uncertainties in the 
model. 

These cases provide a comprehensive evaluation of both the 
MPC and PID controllers in various operating conditions, 
offering insights into their performance, stability, and 
robustness. 

A. Step Response 

Figs. 5 and 6 display the results achieved using the MPC 
controller. 

 

 

Fig. 5 Step response to change of reference - MPC 
 

 

Fig. 6 Step response to change of reference – MPC 
 

In Figs. 5 and 6, it is evident that the reference tracking is 
highly satisfactory, with minimal oscillations. Furthermore, it 
is noteworthy that the rotor speed does not exhibit significant 
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increases during the simulation, with the maximum change 
being approximately 20%. This performance demonstrates the 
effectiveness of the MPC controller in maintaining stable and 
accurate control over the quadcopter. 

Figs. 7 and 8 illustrate the results obtained with the PID 
controllers, which were used for comparison.  

 

 

Fig. 7 Step response to change of reference – PID 
 

 

Fig. 8 Control signals with a step reference change – PID 
 

In this scenario, the response is observed to be slower but 
more stable, characterized by a smoother trajectory with less 
oscillation or overshoot. The response also appears to exhibit a 
bit more overhang, indicating a controlled and gradual approach 
to the reference setpoints. These characteristics demonstrate the 
differences in performance and behavior between the MPC and 
PID controllers, offering insights into the trade-offs between 
speed and stability in control strategies. 

Analyzing the results presented in Figs. 5-8, it is apparent 
that the tracking and monitoring performance for all movement 
scenarios discussed in the paper is excellent. The controllers 
exhibit good response times, accurately following reference 
trajectories, and maintaining system stability. 

As mentioned before, the next section will delve into a deeper 
level of analysis by introducing changes to the system 
parameters. This will provide valuable insights into the 
controllers' robustness and their ability to adapt to variations or 
uncertainties in the model, which is a crucial aspect of real-
world control system design and deployment. 

B. Response with Wrong Model Parameters 

In this chapter we will explore the impact of changing system 
parameters, specifically by increasing the mass of the 
quadcopter by 30% and decreasing the thrust factor by 20%.  

As we can see in Figs. 9 and 10, as expected, when using 
MPC with parameters that do not accurately represent the 
physical system, it is evident that the tracking of the vertical 
position reference is weaker. This is primarily because the 
model's deviation from the actual system parameters results in 

a greater influence of gravity, affecting the quadcopter's vertical 
position control. 

 

 

Fig. 9 Response with wrong parameters – MPC 
 

 

Fig. 10 Control signals with wrong parameters – MPC 
 

These findings highlight the importance of model accuracy 
and the trade-offs between control strategies. While MPC is a 
powerful control method when the model matches the system, 
it can be more sensitive to parameter deviations. This 
emphasizes the need for robust control strategies in real-world 
applications where model uncertainty or parameter variations 
are common. 

Figs. 11 and 12 display the responses obtained with PID 
controllers when subjected to changes in system parameters.  

 

 

Fig. 11 Response with wrong parameters – PID 
 

 

Fig. 12 Control signals with wrong parameters – PID 
 

Notably, the responses with the PID controllers did not 
change significantly, which indicates that the tracking remains 
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proper even in the presence of altered parameters. This suggests 
that PID controllers may exhibit greater robustness to parameter 
variations compared to the MPC controller, maintaining 
consistent performance under these conditions. 

These results emphasize the resilience of PID controllers in 
scenarios with uncertain or varying parameters, making them a 
valuable choice in applications where system parameters may 
not be precisely known. 

V. CONCLUSION 

In this paper, we present systematic design of MPC for 
position control of quadcopters. Through extensive simulations, 
the closed-loop performance of the control system was 
validated. When compared to a control system using a PID 
controller, it is observed that MPC yields superior results, 
particularly when faced with sudden changes in the reference 
signals. 

However, it is worth noting that the performance of MPC 
degrades when inaccurate or wrong parameters (model) are 
used. An advantage of MPC over PID control lies in easier 
parameter tuning. Additionally, the imposition of constraints on 
control inputs and outputs ensures the prevention of undesirable 
quadcopter behavior and ensures its safety. 

As a future work, the study could progress towards non-
linear or adaptive MPC to mitigate the influence of model errors 
and improve performance. Moreover, conducting real-world 
tests on an actual quadcopter would demonstrate the practical 
applicability and effectiveness of the proposed algorithm. This 
research paves the way for more robust and adaptable control 
strategies in the field of quadcopter control and aerial robotics. 
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