Search results for: variational Bayesian approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 579

Search results for: variational Bayesian approximation

579 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
578 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
577 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
576 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

Authors: Alberto Hananel

Abstract:

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
575 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
574 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations

Authors: Jinfeng Wang, Yang Liu, Hong Li

Abstract:

In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.

Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
573 Characterization of Solutions of Nonsmooth Variational Problems and Duality

Authors: Juan Zhang, Changzhao Li

Abstract:

In this paper, we introduce a new class of nonsmooth pseudo-invex and nonsmooth quasi-invex functions to non-smooth variational problems. By using these concepts, numbers of necessary and sufficient conditions are established for a nonsmooth variational problem wherein Clarke’s generalized gradient is used. Also, weak, strong and converse duality are established.

Keywords: Variational problem, Nonsmooth pseudo-invex, Nonsmooth quasi-invex, Critical point, Duality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
572 Variational Iteration Method for the Solution of Boundary Value Problems

Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.

Abstract:

In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.

Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
571 Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M.B.K. Moorthy

Abstract:

The main purpose of this paper is to consider the t-best co-approximation and t-best simultaneous co-approximation in fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Keywords: Fuzzy best co-approximation, fuzzy quotient spaces, proximinality, Chebyshevity, best simultaneous co-approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
570 Definable Subsets in Covering Approximation Spaces

Authors: Xun Ge, Zhaowen Li

Abstract:

Covering approximation spaces is a class of important generalization of approximation spaces. For a subset X of a covering approximation space (U, C), is X definable or rough? The answer of this question is uncertain, which depends on covering approximation operators endowed on (U, C). Note that there are many various covering approximation operators, which can be endowed on covering approximation spaces. This paper investigates covering approximation spaces endowed ten covering approximation operators respectively, and establishes some relations among definable subsets, inner definable subsets and outer definable subsets in covering approximation spaces, which deepens some results on definable subsets in approximation spaces.

Keywords: Covering approximation space, covering approximation operator, definable subset, inner definable subset, outer definable subset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
569 A Descent-projection Method for Solving Monotone Structured Variational Inequalities

Authors: Min Sun, Zhenyu Liu

Abstract:

In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem-s data, the method is proved to converges globally. Some preliminary computational results are also reported to illustrate the efficiency of the method.

Keywords: variational inequalities, monotone function, global convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
568 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements

Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul

Abstract:

A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.

Keywords: Variational method, postbuckling, finite element method, intrinsic coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
567 Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities

Authors: Min Sun, Jing Liu

Abstract:

In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.

Keywords: structured variational inequalities, proximal point method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
566 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
565 Calculation of Wave Function at the Origin (WFO) for the Ground State of Doubly Heavy Mesons Based On the Variational Method

Authors: Maryam Momeni Feili, Mahvash Zandy Navgaran

Abstract:

The wave function at the origin is an important quantity in studying many physical problems concerning heavy quarkonia. This is because that it is using for calculating spin state hyperfine splitting and also crucial to evaluating the production and decay amplitude of the heavy quarkonium. In this paper, we present the variational method by using the single-parameter wave function to estimate the WFO for the ground state of heavy mesons.

Keywords: Wave function at the origin, heavy mesons, bound states, variational method, non-relativistic quark model, potential model, trial wave function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
564 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations

Authors: Sara Barati, Karim Ivaz

Abstract:

In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.

Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
563 On an Open Problem for Definable Subsets of Covering Approximation Spaces

Authors: Mei He, Ying Ge, Jingyu Qian

Abstract:

Let (U;D) be a Gr-covering approximation space (U; C) with covering lower approximation operator D and covering upper approximation operator D. For a subset X of U, this paper investigates the following three conditions: (1) X is a definable subset of (U;D); (2) X is an inner definable subset of (U;D); (3) X is an outer definable subset of (U;D). It is proved that if one of the above three conditions holds, then the others hold. These results give a positive answer of an open problem for definable subsets of covering approximation spaces.

Keywords: Covering approximation space, covering approximation operator, definable subset, inner definable subset, outer definable subset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
562 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
561 Some Separations in Covering Approximation Spaces

Authors: Xun Ge, Jinjin Li, Ying Ge

Abstract:

Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

Keywords: Rough set, covering approximation space, granularitywise separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
560 An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

Authors: A. A. Penin

Abstract:

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

Keywords: a solar cell generator, I − V characteristic, p − n junction, approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
559 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
558 An Analytical Method to Analysis of Foam Drainage Problem

Authors: A. Nikkar, M. Mighani

Abstract:

In this study, a new reliable technique use to handle the foam drainage equation. This new method is resulted from VIM by a simple modification that is Reconstruction of Variational Iteration Method (RVIM). The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Foaming occurs in many distillation and absorption processes. Results are compared with those of Adomian’s decomposition method (ADM).The comparisons show that the Reconstruction of Variational Iteration Method is very effective and overcome the difficulty of traditional methods and quite accurate to systems of non-linear partial differential equations.

Keywords: Reconstruction of Variational Iteration Method (RVIM), Foam drainage, nonlinear partial differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
557 Inexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints

Authors: Min Sun, Jing Liu

Abstract:

In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point ˜xk, and then the multiplier yk is updated to get the new iterate yk+1. In order to get xk+1, we adopt a new descent direction which is simple compared with the existing prediction-correction type ADMs. For the inexact ADM, the resulting proximal subproblem has closedform solution when the proximal parameter and inexact term are chosen appropriately. We show the efficiency of the inexact ADM numerically by some preliminary numerical experiments.

Keywords: variational inequality problems, alternating direction method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
556 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
555 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

Authors: Sarun Phibanchon, Michael A. Allen

Abstract:

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

Keywords: Soliton, instability, variational method, spectral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700
554 Optimal Control of Piezo-Thermo-Elastic Beams

Authors: Marwan Abukhaled, Ibrahim Sadek

Abstract:

This paper presents the vibrations suppression of a thermoelastic beam subject to sudden heat input by a distributed piezoelectric actuators. An optimization problem is formulated as the minimization of a quadratic functional in terms of displacement and velocity at a given time and with the least control effort. The solution method is based on a combination of modal expansion and variational approaches. The modal expansion approach is used to convert the optimal control of distributed parameter system into the optimal control of lumped parameter system. By utilizing the variational approach, an explicit optimal control law is derived and the determination of the corresponding displacement and velocity is reduced to solving a set of ordinary differential equations.

Keywords: Optimal control, Thermoelastic beam, variational approach, modal expansion approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
553 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman

Abstract:

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
552 Bayesian Decision Approach to Protection on the Flood Event in Upper Ayeyarwady River, Myanmar

Authors: Min Min Swe Zin

Abstract:

This paper introduces the foundations of Bayesian probability theory and Bayesian decision method. The main goal of Bayesian decision theory is to minimize the expected loss of a decision or minimize the expected risk. The purposes of this study are to review the decision process on the issue of flood occurrences and to suggest possible process for decision improvement. This study examines the problem structure of flood occurrences and theoretically explicates the decision-analytic approach based on Bayesian decision theory and application to flood occurrences in Environmental Engineering. In this study, we will discuss about the flood occurrences upon an annual maximum water level in cm, 43-year record available from 1965 to 2007 at the gauging station of Sagaing on the Ayeyarwady River with the drainage area - 120193 sq km by using Bayesian decision method. As a result, we will discuss the loss and risk of vast areas of agricultural land whether which will be inundated or not in the coming year based on the two standard maximum water levels during 43 years. And also we forecast about that lands will be safe from flood water during the next 10 years.

Keywords: Bayesian decision method, conditional binomial distribution, minimax rules, prior beta distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
551 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50
550 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Authors: Siavash Asadi Ghajarloo

Abstract:

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174