
 
Abstract—To address the problems of non-linearity and high 

randomness of the original power load sequence causing the 
degradation of power load forecasting accuracy, a short-term load 
forecasting method is proposed. The method is based on the least 
square support vector machine (LSSVM) optimized by an improved 
sparrow search algorithm combined with the variational mode 
decomposition proposed in this paper. The application of the 
variational mode decomposition technique decomposes the raw power 
load data into a series of intrinsic mode functions components, which 
can reduce the complexity and instability of the raw data while 
overcoming modal confounding; the proposed improved sparrow 
search algorithm can solve the problem of difficult selection of 
learning parameters in the LSSVM. Finally, through comparison 
experiments, the results show that the method can effectively improve 
prediction accuracy. 

 
Keywords—Load forecasting, variational mode decomposition, 

improved sparrow search algorithm, least square support vector 
machine.  

I. INTRODUCTION 
HORT-term load forecasting refers to the forecasting of 
power system loads over a short period of time (usually from 

a few hours to a few days). Its main goal is to help power system 
operators to better dispatch power resources, optimize 
generation and transmission plans, and improve system 
economics and reliability. Short-Term Load Forecasting for 
power systems [1] are mainly based on historical power loads, 
weather temperatures, date types and other factors to predict the 
power loads for the next few hours to days. As current 
technology is not yet able to achieve large amounts of electrical 
energy storage, accurate short-term load forecasting is required 
to ensure the safe and stable operation of the power system [2], 
[3]. To improve economic efficiency, short-term load 
forecasting is also important for the economic operation, 
scheduling and reactive power regulation of power systems [4]-
[6]. 

There are currently two main approaches to short-term load 
forecasting: single forecasting methods and combined 
forecasting methods. Single forecasting methods are divided 
into mathematical statistical model [7] methods and machine 
learning model [8] methods. For the mathematical statistical 
model approach, the advantages are simple models, simple 
calculations and faster forecasting [9]-[11]. For example, the 
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literature [12] considers the load characteristics of different 
types of holidays and builds a specific Kalman filter model for 
each. Reference [13] proposed a forecasting model for seasonal 
exponential smoothing. Reference [14] applies a linear 
regression algorithm for forecasting electricity load data with 
different calendars, large data volumes and many features. The 
above algorithms can obtain more accurate results for electricity 
load data with low volatility and strong time series [15]. 
However, for non-linear load data with strong random 
fluctuations [16], it is difficult to make accurate predictions due 
to the poor robustness of mathematical statistical models [17], 
while machine learning algorithms can better handle the non-
linearity and achieve better prediction accuracy. However, 
traditional machine learning algorithms have fewer model 
parameters and the prediction results depend largely on the 
quantity and quality of the data. In the face of today's massive 
and complex power data, it is difficult to mine the internal 
features, thus failing to obtain satisfactory prediction results. 

To address the above problems, this paper applies the 
variational mode decomposition (VMD) technique to 
decompose the original load sequence, introduces an improved 
sparrow search algorithm (ISSA) to optimize the parameter 
selection in the LSSVM, and uses the VMD technique in 
combination with ISSA-LSSVM to improve the effect of 
electricity load forecasting. Finally, the effectiveness of the 
model is verified by experimental comparison. 

II. IMPROVED SPARROW SEARCH ALGORITHM 
The sparrow search algorithm (SSA) is an emerging meta-

heuristic algorithm proposed, which is equivalent to particle 
swarm algorithms and genetic algorithms as a swarm 
intelligence algorithm for population-based feature 
optimization. The algorithm simulates the foraging and anti-
predatory behavior of sparrows and finds the optimal solution 
to the objective function by continuously updating the positions 
of individuals, comparing fitness values and continuously 
updating the positions of discoverers, joiners and vigilantes. 
However, the SSA algorithm suffers from poor initial 
population quality and stability, and is prone to fall into local 
optimality. This paper proposes an improved sparrow search 
algorithm. 
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A. Gaussian Mapping 
The initial position of the individual distribution of the 

population is crucial to the optimization performance of the 
swarm intelligence algorithm itself, and uniform initial 
distribution will effectively improve the speed and accuracy of 
the population finding high-quality solutions. However, in the 
SSA, there is a lack of adjustment means to homogenize the 
population. Only relying on randomness to generate the initial 
population cannot guarantee the breadth of the search range, and 
it is easy to cause the algorithm to appear prematurely in the 
iteration with a fitness value far exceeding the average level. 
Large aggregations of ‘super-sparrows’ lead to the phenomenon 
of ‘precociousness’ and loss of search diversity. Therefore, the 
Gauss chaotic map is introduced to initialize the population by 
using its regularity, randomness, ergodicity, and other 
characteristics to make the population evenly distributed and 
improve the convergence speed and optimization accuracy of the 
algorithm. The mathematical expression for the Gauss map is: 
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where mod is the remainder function, [] represents rounding, x 
= (x1,x2,…,xd) is the chaotic sequence generated by the Gaussian 
map, and d represents the dimension. Fig. 1 is a scatter diagram 
generated by Gauss mapping in the [0,1] interval. 

 

 
Fig. 1 Gauss chaotic sequence distribution 

B. Dynamic Adaptive Weights  
In the optimization process of the traditional SSA, the 

movement process of the finder to the optimal solution is easy 
to show a "jumping" step state. Although this mode is beneficial 
to improve the convergence speed of the algorithm and the 
population in a short time, a large number of internal pooling 
will reduce the diversity of the search process to a certain extent, 
and it will lead to local optimal ignoring search blind spots and 
insufficient search range. At the same time, it is considered that 

the sparrow finder's lack of use of its location information 
results in insufficient search accuracy of the algorithm. 
Therefore, the global search and local development capabilities 
of a uniformly distributed dynamic adaptive weight 
coordination algorithm are proposed by referring to the weight 
idea. 

The finder location is updated as follows: 
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The equation of the uniformly distributed dynamic adaptive 

weight ω is as follows: 
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In the equation, ωinitial and ωfinal are the initial value and final 

value of the weight; ẟ [0,1] is a uniformly distributed random 
number. 

C. Lévy Flight Strategy  
When the discoverer iterates a certain number of times and 

the fitness value remains unchanged, the follower becomes the 
discoverer. To avoid the algorithm falling into local optimality, 
the Lévy flight strategy is introduced into the follower update 
formula to improve the global search capability. The improved 
formula is as follows: 
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In (5), 1t

pX  is the best position currently occupied by the 
finder, and the Lévy flight mechanics are as follows: 
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In (6), r3 and r4 are both random numbers in the range of [0, 
1], and the value of ξ can be 1.5. The calculation method of  
is as follows: 
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Start

GAUSS initializing populations

Calculating and ranking fitness values

Update current sparrow position with fitness 
values

Optimal parameter finding for LSSVM using 
ISSA algorithm

Update the current optimal sparrow position 
with the fitness value

Whether iteration conditions are met

Output optimal parameters

End

Yes

No

Fig. 2 ISSA advantage search chart 

III. VMD ALGORITHM AND ISSA OPTIMIZATION LSSVM 

A. Dynamic Adaptive Weights  
The short-term power load sequence can be decomposed by 

variational mode, and the original complex signal can be 
adaptively decomposed into k limited bandwidth inherent 
modal signals using the principle of non-recursion and variable 
mode, and then subsequences of different frequency scales can 
be obtained. Each sub-sequence output has better regularity. 
Using VMD, the original load time series f is decomposed into 
finite bandwidth modal functions, k = 1,2, … K. The specific 
steps are the following four steps: solving the frequency band 
of the modal function, solving the variational problem, 
unconstrained variational transformation and alternate update. 

B. ISSA to Optimize LSSVM 
LSSVM is an improvement of the support vector machine. 

SVM is an effective machine learning method. Its main idea is 
to map the input vector to a high-dimensional feature space 
through a non-linear mapping function selected in advance, and 
to construct an optimal decision function in this space. LSSVM 
changes the inequality constraint of the SVM optimization 
problem to the equality constraint, so that the original problem 
is transformed into the problem of solving linear equations, 
simplifying the algorithm operation process, improving the 
convergence accuracy and solving speed, but LSSVM still has 
learning parameters (penalty factor C, Nuclear parameter). The 
traditional parameter selection method is the cross-validation 
method. In order to improve the prediction accuracy, this paper 
introduces the ISSA algorithm to optimize the hyperparameters 
of LSSVM. The ISSA search flow is shown in Fig. 2. The 

specific optimization steps of ISSA-LSSVM are as follows: 
1. Set the total number of sparrow groups in the ISSA 

algorithm n = 30, the maximum number of iterations itermax 
= 200. The ratio of discoverers and early warnings are both 
0.2, and the value ranges of C and σ are c [0,100], 
σ [0.01,0.5] initialize sparrow population using Gauss 
map; 

2. Calculate the fitness of each sparrow and sort it to define the 
population to which each sparrow belongs;

3. Update the position of each sparrow population according 
to (3) and (5); 

4. Re-calculate the fitness of each sparrow after the updated 
position, compare the fitness before and after the update, 
and keep the better fitness to continue the update; 

5. Determine whether the number of iterations is itermax. If it 
is not itermax, skip to (2) and continue until it is itermax, and 
terminate the operation; 

6. The position of the optimal fitness Xbest obtained is the 
parameters C and σ of LSSVM. 

IV. EXPERIMENTS AND ANALYSIS  
In this paper, a region in southern China is used, from March 

1 to May 31, 2018. The data are obtained from the power 
company's historical storage records, with a sampling step of 1 
hour for the raw data and a total of 2,173 points for the 
electricity load data. The sliding forecast method is used to 
forecast the load data for May 31 one step ahead. The raw load 
is shown in Fig. 3. The mean absolute error MAE (mean) and 
root mean square error RMSE (root-mean-square error) were 
selected to evaluate the forecasting effect. 
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Among them, ˆ ty  and ty  are the predicted value and the true 

value of the load, respectively. 
 

 

Fig. 3 Original load sequence diagram 
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A. Variational Modal Decomposition  
In the variational modal decomposition of the original load, 

some parameters need to be set beforehand involving penalty 
factor alpha, modal number K value, initialized central 
frequency init, DC component DC, initialized central frequency 
tol. Because the value of K cannot be reasonably determined by 
random experiments, this paper uses manual experimental 
method to search for the optimal number K as 7 according to 
whether the central frequency is repeated or not. other 
parameters are uniform as shown in Table I, were configured 
according to the default values to ensure that the data would not 
be distorted. The original load sequence was decomposed to 
obtain the subsequence as shown in Fig. 4. 

 
TABLE I 

VMD PARAMETER CONFIGURATION 
 alpha init DC tol 

Parameter settings 2000 1 0 1.0E-7 

 

 

Fig. 4 VMD decomposition structure 

B. Forecasting and Analysis 
To verify the effectiveness of the proposed model, seven 

models, including LSSVM, VMD-LSSVM, EMD-LSSVM, 
VMD-GA-LSSVM, VMD-PSO-LSSVM, VMD-SSA-LSSVM 
and VMD-ISSA-LSSVM, are constructed under the same 
conditions in order to fully validate the superiority of the 
variational modal decomposition technique and the improved 
sparrow algorithm. Among them, GA is the genetic algorithm 
and PSO is the particle swarm algorithm, and the maximum 
population number is set to 30 for all three algorithms, and the 
number of iterations is 200. The prediction error indexes of 
different models are shown in Table II, and the prediction 
effects of each model are shown in Figs. 5 and 6. 

As can be seen from Table II, the prediction accuracy of the 
model loaded with empirical mode decomposition (EMD) and 
VMD techniques has significantly improved compared with the 
original single model, and the improvement effect of VMD is 
significantly better than that of EMD technique, which also 
fully verifies the improvement effect of VMD on EMD, which 
can effectively solve the modal mixing problem of EMD and 
improve the prediction accuracy. Compared with the LSSVM 

model, the MAE and RMSE indices of the EMD-LSSVM 
model were reduced by 0.157 MW and 0.668 MW respectively, 
with a relative improvement of 3.5% and 10.6% respectively. 
The MAE and RMSE metrics for the VMD-LSSVM were 
reduced by 0.28 MW and 1.196 MW respectively, with relative 
percentage improvements of 6.2% and 18.9%. 

 
TABLE II 

COMPARISON OF PREDICTION RESULTS OF DIFFERENT MODELS 
Models MAE RMSE 
LSSVM 4.472 6.327 

EMD-LSSVM 4.315 5.659 
VMD-LSSVM 3.672 5.131 

VMD-GA-LSSVM 2.706 3.680 
VMD-PSO-LSSVM 1.707 2.758 
VMD-SSA-LSSVM 0.580 0.911 
VMD-ISSA-LSSVM 0.427 0.715 

 

 

Fig. 5 Load forecasting results for different decomposition techniques 
 

 

Fig. 6 Load forecasting results for different optimization algorithms 
 

The introduction of different optimization algorithms on the 
basis of the VMD-LSSVM model will improve the prediction 
accuracy to varying degrees, with the ISSA algorithm showing 
the best improvement in prediction accuracy, followed by SSA 
and PSO, and the GA algorithm showing the worst relative 
improvement. Compared to the VMD-LSSVM model, the 
MAE and RMSE metrics of the VMD-GA-LSSVM model were 
reduced by 0.966 and 1.451 relative improvement percentages 
of 26.3% and 28.3% respectively, while the MAE and RMSE 
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metrics of the VMD-PSO-LSSVM model were reduced by 
1.965 and 2.373 relative improvement percentages of 53.5% 
and 46.24%, the MAE and RMSE metrics for the VMD-SSA-
LSSVM model decreased by 3.092 and 4.22 relative 
improvement percentages of 84.2% and 82.24%, respectively, 
and the MAE and RMSE metrics for the VMD-ISSA-LSSVM 
model decreased by 3.245 and 4.416 relative improvement 
percentages of 88.37% and 82.24%. In summary, it can be seen 
that the ISSA algorithm has the best improvement effect, 
verifying that the ISSA algorithm can effectively solve the 
problem of difficult selection of learning parameters for 
LSSVM and substantially improve the prediction accuracy. 

The effect of each model can be visualized in Figs. 5 and 6. 
It is clearly observed that the trend of the VMD-LSSVM model 
in Fig. 5 best fits the true value, and the predicted results of the 
VMD-ISSA-LSSVM model in Fig. 6 nearly overlap with the 
true value. It is also verified that the model proposed in this 
paper works better. 

V. CONCLUSION 
A study on short-term electricity load forecasting is 

conducted and a short-term load forecasting method based on 
VMD-ISSA-LSSVM is proposed, with the following 
conclusions being drawn: 
(1) The original load data are processed by the variational 

modal decomposition technique, which reduces the 
complexity and instability of the original data and improves 
the accuracy of load forecasting, and the VMD technique is 
significantly better than the EMD technique, in addition, the 
VMD technique can solve the problem of modal mixing that 
occurs in the EMD technique and deeply explores the data 
features. 

(2) ISSA has good parameter finding ability, which can well 
solve the problem of difficult selection of learning 
parameters in LSSVM and improve the prediction accuracy 
of the model. As well, the improvement effect on the 
prediction accuracy of the model is more obvious compared 
with the more classical algorithms GA and PSO algorithms. 
The MAE of the VMD-ISSA-LSSVM prediction method 
proposed in this paper is 0.427, and RMSE is 0.715. 
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