
 

 

  
Abstract—This paper proposes a comparison between 

wavelet neural networks (WNN), RBF neural network and 
polynomial approximation in term of 1-D and 2-D functions 
approximation. We present a novel wavelet neural network, based on 
Beta wavelets, for 1-D and 2-D functions approximation. Our 
purpose is to approximate an unknown function f: Rn  R from 
scattered samples (xi; y = f(xi)) i=1….n, where first, we have little a 
priori knowledge on the unknown function f: it lives in some infinite 
dimensional smooth function space and second the function 
approximation process is performed iteratively: each new measure on 

the function (xi; f(xi)) is used to compute a new estimate
∧

f  as an 
approximation of the function f. Simulation results are demonstrated 
to validate the generalization ability and efficiency of the proposed 
Beta wavelet network. 
 

Keywords—Beta wavelets networks, RBF neural network, 
training algorithms, MSE, 1-D, 2D function approximation. 

I. INTRODUCTION 
OMBINING the wavelet transform theory with the basic 
concept of neural networks [1]-[2], a new mapping 

network called wavelet neural network or wavenets (WNN) is 
proposed as an alternative to feedforward neural networks for 
approximating arbitrary nonlinear functions. Kreinovich prove 
in [3] that if we use a special type of neurons (wavelet 
neurons), then the resulting neural networks are optimal 
approximators in the following sense: as ε → 0, the number of 
bits that is necessary to store the results of a 3-layer wavelet 
neural network approximation, increases slower than for any 
other approximation scheme. The wavenet learning algorithms 
consist of two processes: the self-construction of networks 
and the minimization of error. In the first process, the network 
structures applied for representation are determined by using 
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wavelet analysis [4]-[6]. The network gradually recruits 
hidden units to effectively and sufficiently cover the time-
frequency region occupied by a given target. Simultaneously, 
the network parameters are updated to preserve the network 
topology and take advantage of the later process. In the 
second process, the approximations of instantaneous errors are 
minimized using a regressor algorithm. The parameter of the 
initialized network is updated using the steepest gradient-
descent method of minimization. Each hidden unit has a 
square window in the time-frequency plane. The optimization 
rule is only applied to the hidden units where the selected 
point falls into their windows. Therefore, the learning cost can 
be reduced. 

Wavelets occur in family of functions and each is defined 
by dilation ai which controls the scaling parameter and 
translation ti which controls the position of a single function, 
named the mother wavelet ψ(x). Mapping functions to a time-
frequency phase space, WNN can reflect the time-frequency 
properties of function more accurately than the RBFNN. 
Given an n-element training set, the overall response of a 
WNN is:  
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where Np is the number of wavelet nodes in the hidden layer 
and wi is the synaptic weight of WNN. A WNN can be 
regarded as a function approximator which estimates an 
unknown functional mapping: 

y = f(x) +ε  (2)

where f is the regression function and the error term ε is a 
zero-mean random variable of disturbance. There are a 
number of approaches for WNN construction [7]-[9], we pay 
special attention on the model proposed by Zhang [10].  

This paper is structured in 4 sections. After a brief 
introduction and some basic definitions, we present in section 
2 the Beta function and we prove that it is a mother wavelet. 
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β(x) = 
 0  else 

This function will be the heart of the new Beta Wavelet 
Neural Network (BWNN). In section 3 we present the classic 
problem in regression analysis; we focalized on tow 
algorithms: the residual based selection and the stepwise 
selection by orthogonalization. In the last section (section 4), 
we present some results and tables related to the application of 
our new Beta Wavelet Neural Network in 1-D approximation, 
2-D approximation and some others regressor as RBF neural 
network and polynomial approximation.  

II.  BETA WAVELETS 

The Beta function [11-13] is defined as: if p>0, q>0, (p, q) 
∈ IN  

 

 

            (3) 
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A.  Derivatives of Beta Function  
We prove in [14]-[15] that all derivatives of Beta function 

∈ L²(IR) and are of class C∞. The general form of the nth 
derivative of Beta function is: 
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The first (Beta 1), second (Beta 2) and third (Beta 3) 
derivatives of Beta wavelet are shown graphically in Fig. 1. 

 
Fig. 1 First, second and third derivatives of Beta function 

B.  Proposition 
if p = q , for all n ∈ IN and  0 < n < p  the functions  

n

n

n xd
xd

x
)(

)(
β

=Ψ  are wavelets [14]-[15]. 

III. 1-D APPROXIMATION FORMULATION 
The mathematical formulation of 1-D function 

approximation is given by: 

Let ( ){ }KkyxE kk ...,1,0, == . We want to find N 
samples of f(x) satisfying f(xk)=yk for k=0,1,…,K. 

 

A. Polynomial Approximation: Lagrange Method 
We should find a polynomial PK(xk) (k=0,…,K) equal to 

f(xk) for all the known (K+1) xk.  

The general formula of Lagrange polynomial is : 
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B. RBF Neural Network Approximation 
A neural network with one output y, d inputs {x1,x2,…, 

xd} and L nodes can be parameterized as follows:  
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where wi is the weight of neurons and φ is the activation 
function. 

 
C. Wavelet Neural Network Approximation 
Given an n-element training set, the overall response of a 

WNN is:  
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Where Np is the number of wavelet nodes in the hidden layer 
and Wi is the synaptic weight of WNN. A WNN can be 
regarded as a function approximator which estimates an 
unknown functional mapping: 

y = f(x) +ε  (9)
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Where f is the regression function and the error term ε is a 
zero-mean random variable of disturbance. There are a 
number of approaches for WNN construction [16]-[17], we 
pay special attention on the model proposed by Zhang [18].  

 
D. Selecting Best Wavelets Regressors 

Selecting the best regressor from a finite set of regressor 
candidates is a classical problem in regression analysis [18]. 
In our case the set of regressor candidates is the wavelets 
library W as defined by Zhang [10]. The problem is then to 
select a number M< L of wavelets from W, the best ones 
based on the training data N

1ο , for building the regression. 
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where I is an M-elements subset of the index set {1,2,…,L}, ui 
∈ ℜ 

We denote by W the set of wavelets resulting from the 
refining of family: 

( ){ }200 ),(,)(,: ZSSnSmSnmtxa iaian ⊂∈∈−Ψ , which called 
it the library of wavelet regressor candidates. 
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E. Regression Selection Problem 
Given a wavelet library W defined by (3.2) and a set of 

training data N
1ο , let IM be the set of all the M-elements 

subset of {1,2,...,L}, M < L. the problem is to find I ∈IM that 
minimizes: 

∑ ∑
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In principle such a selection can be performed by examining 
all the M-elements subsets of W, but the combination of all 
the possible subsets is usually very large and exhaustive 
examination may not be feasible in practice. Some sub-
optimal and heuristic solutions have to be considered. In the 
following we propose to apply several such heuristic 
procedures. 
 

F. The Residual based Selection 
The idea of this method [20]-[21] is to select, for the first 

stage, the wavelets in W that best fit the training data N
1ο , and 

then iteratively select the wavelet that best fit the residual of 
the fitting of the previous stage. In the literature of the 
classical regression analysis, it is considered as a simple, but 
not effective method, for example in [19] where it is called 
stage-wise regression procedure. It is also similar to the 
projection pursuit regression (PPR) [22]-[23], but much 
simpler than the latter. Because for classical regression the 
number of regressor candidates is relatively small, some more 

complicated may reach several hundreds or even more, the 
computational efficiency becomes more important and the 
simplicity of this method is of interest. Recently it is also used 
in some similar problems, such as the matching pursuit 
algorithm of S. Mallat and Z.Zhang [10] and the adaptative 
signal representation of S.Qian and D.Chen [17]. Define the 
initial residual γ0(k) = yk,        k = 1,…,N, with yk the output 
observations in N

1ο .  

Set f0(x) ≡ 0; at stage I(I=1,…,M), search among W the 
wavelet Ψj that minimizes: 
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and γi-1(k)(k = 1,…,N) are the residual of stage i-1.  

note )(minarg
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then Ψl,i is the wavelet selected at stage i. Update fi and γI: 

)()()( ,,1 xuxfxf ililii Ψ+= −  

Nkxukk kililii ,....1)()()( ,,1 =Ψ−= −γγ  

 
G. Stepwise Selection by Orthogonalization 

The above residual based selection procedure [24]-[26] 
does not explicitly consider the interaction or the non 
orthogonality of the wavelets in W. The idea of this 
alternative method is to select, for the first stage, the wavelet 
in W that best fits the training data N

1ο , and then iteratively 

select the wavelet that best fits N
1ο  while working together 

with the previously selected wavelets. Recently this method 
has been used for training radial basis function neural 
networks (RBFNN) and other nonlinear modeling problems 
by Chen et al.[17]-[18].  

At stage I of this procedure, assume that i-1 already 
selected wavelets correspond to the vectors vl,1,….,vl,i-1. In 
order to select the Ith wavelet, we have to compute the distance 
from     y to the space span (vl1,….,vli-1,vj) for each j=1,…,L 
and              j ≠ l1,…,li-1. For computational efficiency, we 
orthogonalize the later selected vectors vj to the earlier 
selected ones. 

IV. EXPERIMENTS 
In this section, we present some experimental results of the 

proposed Beta Wavelet Neural Networks on approximating 
three 1-D functions using the Stepwise selection by 
orthogonalization training algorithms. First, simulations on the 
1-D function approximation are conducted to validate and 
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compare the proposed BWNN with some others wavelets and 
some others method such as RBF neural networks and 
polynomial approximation. The input x is constructed by the 
uniform distribution, and the corresponding output y is 
functional of y = f(x). The training and test data are composed 
of 50 points and 500 points, respectively. The same functions 
are used on RBF neural networks and polynomial 
approximation in order to compare these approximators 
method. Second, we approximate four 2-D functions using 
Beta wavelet networks and some others wavelets networks to 
illustrate the robustness of the proposed wavelets family. 

We compare the performances of the three kind of regressor 
by the Mean Square Error (MSE) defined by: 
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A. 1-D approximation using the Stepwise Selection by 
Orthogonalization Algorithm 

These results are given, using the Stepwise selection by 
orthogonalization algorithm, on a wavelet neural network 
using 6 wavelets, 4 levels decomposition, 300 iterations and 
50 uniform spaced points for training. 

The table below gives the mean square error using 
traditional wavelets and Beta wavelets: 

 
TABLE I 

COMPARISON OF MSE FOR BETA WAVELETS NEURAL NETWORKS AND SOME 
OTHERS USING THE STEPWISE SELECTION BY ORTHOGONALIZATION 

ALGORITHM IN TERM OF 1-D FUNCTIONS APPROXIMATION 
Functions Mex-hat Beta 1 Beta 2 

F1 3.03e-005 1.44e-004 4.00e-005 

F2 9.82e-006 3.35e-005 8.21e-006 

F3 4.87e-005 2.15e-004 2.84e-005 
 

Functions Beta 3 Beta 4 Beta 5 

F1 1.30e-005 2.76e-005 2.58e-005 

F2 2.72e-005 1.99e-006 4.28e-005 

F3 2.09e-005 4.94e-005 1.57e-003 

 
Functions Beta 6 Polywog2 Slog1 

F1 3.76e-005 3.86e-005 4.79e-005 

F2 1.02e-004 1.09e-005 2.10e-004 

F3 2.46e-005 1.32e-004 1.16e-004 

The best approximated functions F1, F2 and F3 are 
displayed in Figs. 2. For F1 the Mean Square Error (MSE) of 
the Mexican hat WNN is 3.03e-005, comparing to 1.30e-005 
the Beta 3 WNN achieved. The fourth derivative of Beta 
wavelet approximate the second function F2 with an MSE 
equal to 1.99e-006 where the MSE using the Mexican hat 
wavelet network is 9.82e-006. Finally we can see that the 
MSE is equal to 2.09e-005 for Beta 3 WNN comparing to 
4.87e-005 for Mexican hat WNN. 

 a  

 b  

c  

Fig. 2 Approximated 1-D function using wavelet neural network and 
MSE evolution 

a- Approximation of F1 with Beta 3 WNN p=45, q=45 
b- Approximation of F2 with Beta 4 WNN p=55, q=55 
c- Approximation of F3 with Beta 2 WNN p=24, q=24 
 

B.  1-D Approximation using Neural Network 
The table below gives results of approximation on the 

functions F1, F2 and F3 using RBF neural networks 
constructed with 6 neurones on the hidden layer and 300 
iterations for learning.  

 
TABLE II 

THE MSE USING RBF NEURAL NETWORKS IN TERM OF 1-D FUNCTIONS 
APPROXIMATION 

Functions F1 F2 F3 

MSE 1.134e-005 4.446e-006 1.016e-003 

 
C. 1-D polynomial approximation 
In the case of polynomial approximation we change the 

polynomial degree to evaluate the MSE criteria. The table 
below gives the MSE for different polynomial degree for the 
functions F1, F2 and F3. 
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TABLE III 
EVOLUTION OF MSE IN TERM OF POLYNOMIAL DEGREE FOR 1-D FUNCTIONS 

APPROXIMATION 

Functions F1 

Deg 8 9 10 

MSE 7.71e-003 4.26e-003 4.25e-003 

 

Functions F2 

Deg 6 7 8 

MSE 1.43e-
003 

1.43e-
003 

2.36e-
005 

 

Functions F3 

Deg 8 9 10 

MSE 
1.39e-

003 
1.39e-

003 
1.40e-

003 

 
From these simulations we can deduce the superiority of the 

wavelet neural networks over neural networks and polynomial 
approximation in term of 1-D functions approximation. The 
WNN based on Beta wavelets have the best approximators 
because these wavelets family have the particularity of the 
adjustment of the parameters p, q x0 and x1.  

 
D. 2-D Approximation using the Stepwise Selection by 

Orthogonalization Algorithm  

These results are given, using the Stepwise selection by 
orthogonalization algorithm, on a wavelet neural networks 
using 9 wavelets, 4 levels decomposition, 100 iterations to 
approximate some 2-D functions (S1, S2, S3 and S4 given on 
figure 4) using a uniform distribution of 11x11 points and 
11x11 randomly  distribution (see Fig. 3). 

 

 

 

Fig. 3 Distribution points or approximation 
a- Uniform distribution of 11x11 points 
b- Randomly distribution of 11x11 points 

 
S1 

 
S2 

 
S3 S4 

Fig.4: 2-D functions 
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The table below gives the MSE of the 2-D function 

approximation, using WNN, for the tow distributions points. 
 

TABLE IV 
 THE MSE FOR BETA WAVELETS NEURAL NETWORKS AND SOME OTHERS 

USING THE STEPWISE SELECTION BY ORTHOGONALIZATION ALGORITHM IN 
TERM OF 2-D FUNCTIONS APPROXIMATION USING DISTRIBUTION 1 AND 2 
Surface Distribution Mex-hat Beta 1 Beta 2 

S1 1 3.32e-004 6.82e-007 2.20e-007 
S2 1 1.2 e-004 2.88e-007 1.21e-007 
S3 1 3.25 e-003 4.81 e-004 2.65 e-004 
S4 1 4.13 e-002 4.92 e-004 1.00 e-003 

 
Surface Distribution Beta 3 Beta 4 Beta 5 

S1 1 4.62e-007 1.43e-006 1.01e-005 
S2 1 2.22e-007 6.05e-007 1.46e-005 
S3 1 3.37e-004 7.94 e-004 1.92 e-003 
S4 1 5.20 e-004 1.64 e-003 6.26e-004 

 
Surface Distribution Beta 6 Polywog 2 Slog1 

S1 1 4.07e-004 3.44e-006 2.10e-005 
S2 1 4.50e-006 6.02e-006 7.33e-005 
S3 1 9.91 e-004 6.26e-005 4.33 e-003 
S4 1 1.99 e-003 1.91 e-003 8.71 e-003 

 
Surface Distribution Mex-hat Beta 1 Beta 2 

S1 2 1.63e-004 3.83e-007 1.38e-007 
S2 2 4.64e-005 2.60e-007 6.83e-006 
S3 2 2.18 e-003 1.71 e-004 7.91 e-004 
S4 2 1.05 e-002 2.25 e-004 3.94 e-004 

 
Surface Distribution Beta 3 Beta 4 Beta 5 

S1 2 5.36e-007 4.41e-007 5.85e-007 
S2 2 4.27e-007 1.04e-006 3.31e-006 
S3 2 4.37e-004 1.64e-004 5.01e-004 

a              b 
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S4 2 4.85e-004 5.17e-004 5.16e-004 
 

Surface Distribution Beta 6 Polywog 2 Slog1 
S1 2 4.12-007 5.79e-006 9.68e-005 
S2 2 8.14e-006 5.37e-006 5.46e-005 
S3 2 7.41e-004 1.78e-004 1.56e-003 
S4 2 4.64e-004 1.08e-003 6.37e-003 

We display in Fig. 4 the 2-D data used in our tests. From 
table 4 we can see that Beta wavelet networks are more 
suitable for 2-D function approximation then the others 
wavelets neural networks. For example we have an MSE 
equal to 2.20e-007 when we use a uniform distribution input 
patterns point for training to approximate the surface S1 using 
Beta 2 wavelet neural networks over 3.32e-004 if we use 
Mexican hat wavelet neural networks and an MSE for Beta 1 
and Mexican hat respectively of 1.38e-007 and 1.63e-004 
when we use a randomly input patterns point.  

V. CONCLUSION 
We present two experimental results of the proposed Beta 

Wavelet Neural Networks (BWNN) on approximating 1-D 
and 2-D functions using the Stepwise selection by 
orthogonalization training algorithms. First, simulations on the 
1-D function approximation on witch we prove the superiority 
of Beta wavelets in term of MSE over the classical wavelets 
network and the RBF neural networks and the polynomial 
approximation method. Second, the two-dimension functions 
are approximated with the Beta wavelets and some others one 
to illustrate the robustness of the proposed wavelets family. 
This new wavelets family can be used to approximate volume 
using the 2-D 1-D 2-D technique. 
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