Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M.B.K. Moorthy

Abstract:

The main purpose of this paper is to consider the t-best co-approximation and t-best simultaneous co-approximation in fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Keywords: Fuzzy best co-approximation, fuzzy quotient spaces, proximinality, Chebyshevity, best simultaneous co-approximation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091586

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613

References:


[1] Deng, Zi-Ke.Fuzzy pseudo-metric spaces. J. Math Anal Appl, 86 (1982) 74 - 95.
[2] Erceg, M. A. Metric spaces in fuzzy set theory. J. Math Anal Appl. 69 (1976), 205 -230.
[3] Franchetti, C. and Furi, M. Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045 - 1048.
[4] Geetha S. Rao and Chandrasekaran, K. R. Best co-approximation in normed linear space with property (Λ), Math. Today. 2 (1984), 33 -40.
[5] Geetha S. Rao and Chandrasekaran, K. R. Characterizations of elements of best co-approximation in normed linear spaces, Pure Appl. Math. Sci. 26 (1987), 139 -147.
[6] Geetha S. Rao and Chandrasekaran, K. R. Best co-approximation and Schauder bases in Banach spaces, Acta Scient. Math. Szeged. 54 (1990), 339 -354.
[7] Geetha S. Rao, S and Saravanan, R.Best simultaneous co-approximation, Indian J. Math., 40(3) (1998), pp. 353-362.
[8] Geetha S. Rao and Saravanan, R. Characterization of best uniform co-approximation, Approximation Theory and its Applications, 15 (1999), 23 - 37.
[9] George, A and Veeramani, P. On some result in fuzzy metric space. Fuzzy Sets and Systems, 64 (1994), 395 - 399.
[10] Goudarzi, M and Vaezpour, S. M. Best simulataneous approximation in fuzzy normed spaces, Iranian J. Fuzzy Systems, 7(3) (2010), 87 - 96.
[11] Kaleva, O and Seikkala, S. On fuzzy metric spaces. Fuzzy Sets and Systems, 12 (3) (1984), 215 - 229.
[12] Kramosil, O and Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica, 11 (1975), 326 - 334.
[13] Mazaheri, H and Modarres, S. M. S. Some results concerning proximinality and coproximinality, Nonlinear Anal, 62(6) (2005), 1123 - 1126.
[14] Modarres, S. M. S and Dehghani, M. Best simultaneous co-approximation in normed linear spaces, Proceeding of the 42nd Annual Iranian Mathematics Conference Vali-e-Asr University, Rafsanjan, Iran, 5-8 September, 2011, 413-416.
[15] Narang, T.D. Best co-approximation in normed spaces, Publ. Inst. Math. (Beograd) (N.S.) 51 (65) (1992), 71 - 76.
[16] Papini, P. L., and Singer, I. Best co-approximation in normed linear spaces, Monatshefte f¨ur Mathematik, 88 (1979), 27 - 44.
[17] Saadati, R and Vaezpour, S. M. Some results on fuzzy Banach spaces. J. Appl. Math and Computing, 17 (1-2) (2005), 475 - 484.
[18] Vaezpour, S. M and Karimi, F. t-Best approximation in fuzzy normed spaces. Iranian J. Fuzzy Systems, 5 (2) (2008), 93 - 98.
[19] Veeramani, P. Best approximation in fuzzy metric spaces. J. Fuzzy Math, 9 (1) (2001) 75 - 80.