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Abstract—Let (U ;D) be a Gr-covering approximation space
(U ; C) with covering lower approximation operator D and covering
upper approximation operator D. For a subset X of U , this paper
investigates the following three conditions: (1) X is a definable subset
of (U ;D); (2) X is an inner definable subset of (U ;D); (3) X is an
outer definable subset of (U ;D). It is proved that if one of the above
three conditions holds, then the others hold. These results give a
positive answer of an open problem for definable subsets of covering
approximation spaces.

Keywords—Covering approximation space, covering approxima-
tion operator, definable subset, inner definable subset, outer definable
subset.

I. INTRODUCTION

Pawlak approximation spaces, which were due to the clas-
sical rough set theory and were first proposed by Z. Pawlak in
[8], are built on equivalence relation ([2], [6], [9], [10], [11],
[12], [13]). D. Pei [14] generalized definable subsets of Pawlak
approximation spaces to inner definable subsets and outer
definable subsets. For a Pawlak approximation space (U ; C)
with lower approximation operators C and covering upper
approximation C, D. Pei obtained that a subset X of U is a
definable subset of (U ; C) if and only if X is an inner definable
subset of (U ; C), if and only if X is an outer definable subset of
(U ; C). However, equivalence relation imposes restrictions and
limitations on many applications [26]. In the past years, with
development of computer science, applications of rough-set
theory have been extended from Pawlak approximation spaces
to covering approximation spaces (see [1], [4], [7], [16], [18],
[19], [20], [22], [23], [24], [25], [26], for example). This brings
various covering approximation operators ([15], [17], [26]),
and the following question arise naturally (see [5, Question
1.4]).

Question 1.1: For a covering approximation space with
some covering lower approximation operators and covering
upper approximation operators, what are relations among
definable subset, inner definable subset and outer definable
subset?

Taking Question 1.1 into account, X. Ge and Z. Li [5]
investigate covering approximation spaces with ten covering
approximation operators respectively, and give some answers
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of Question 1.1. However, The following question is still open
(see [5, Question 4.5]).

Question 1.2: Let (U ;D) be a covering approximation
space (U ; C) with lower approximation operators D and cover-
ing upper approximation D. Whether there are some relations
among definable subsets, inner definable subsets and outer
definable subsets of (U ;D)?

In this paper, we give some positive answers of Question
1.2 for Gr-covering approximation spaces.

II. PRELIMINARIES

Definition 2.1 ([16]): Let U , the universe of discourse, be
a finite set and C be a family of nonempty subsets of U .

(1) C is called a cover of U if
⋃{K : K ∈ C} = U .

(2) The pair (U ; C) is called a covering approximation space
if C is a cover of U .

Notation 2.2: Let (U ; C) be a covering approximation
space. Throughout this paper, we use the following notations,
where x ∈ U and F ⊂ {X : X ⊂ U}.

(1) Cx = {K : x ∈ K ∈ C}.
(2) N(x) =

⋂{K : K ∈ Cx}.
(3) D(x) = U − ⋃{K : K ∈ C − Cx}.

Definition 2.3 ([4]): Let (U ; C) be a covering approxima-
tion space. (U ; C) is called a Gr-covering approximation space
if x ∈ K ∈ C implies D(x) ⊂ K.

Remark 2.4: Gr-covering approximation space in Defini-
tion 2.3 are denoted by Sr-covering approximation space in
[3],

Definition 2.5 ([5]): Let (U ; C) be a covering approxima-
tion space and X ⊂ U . Put

D(X) = {x ∈ U : ∃u(u ∈ N(x)
∧

N(u) ⊂ X)};
D(X) = {x ∈ U : ∀u(u ∈ N(x) =⇒ N(u)

⋂
X �= ∅)}.

(1) D : 2U −→ 2U is called covering upper approximation
operator.

(2) D : 2U −→ 2U is called covering lower approximation
operator.

(3) D(X) is called a covering upper approximation of X .
(4) D(X) is called a covering lower approximation of X .

Remark 2.6: (1) Operators D and D in Definition 2.4 are
denoted by C3 and C3 respectively in [16], are denoted by C3

and C
3

respectively in [17], and are denoted by C4 and C4

respectively in [21],
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(2) It is known that, for a covering approximation space
(U ;D), the following implication does not hold in general
([16, Example 1]).

X ⊂ U =⇒ D(X) ⊂ X ⊂ D(X).

We use (U ;D) to denote covering approximation space
(U ; C) with covering lower approximation operator D and
covering upper approximation operator D.

Definition 2.7 ([5]): Let (U ;D) be a covering approxima-
tion space.

(1) X is called a definable subset of (U ;D) if D(X) =
D(X).

(2) X is called an inner definable subset of (U ;D) if
D(X) = X .

(3) X is called an outer definable subset of (U ;D) if
D(X) = X .

It is clear that the following proposition holds.

Proposition 2.8: Let (U ;D) be a covering approximation
space and X ⊂ U . Consider the following conditions.

(1) X is a definable subset of (U ;D).
(2) X is an inner definable subset of (U ;D).
(3) X is an outer definable subset of (U ;D).
If two of the above three conditions hold, then the other

holds.

Remark 2.9: It is known that a definable subset of (U ;D)
need not to be an inner definable or outer definable subset of
(U ;D) (see [5, Example 4.4]).

III. THE MAIN RESULTS

Lemma 3.1: Let (U ; C) be a covering approximation space
and x, y ∈ U . Then the following are equivalent.

(1) x ∈ N(y).
(2) Cy ⊂ Cx.
(3) N(x) ⊂ N(y).
(4) D(y) ⊂ D(x).
(5) y ∈ D(x).

Proof: (1) =⇒ (2): Let x ∈ N(y) =
⋂{K : K ∈ Cy}.

Then for each K ∈ Cy , x ∈ K, and so K ∈ Cx. Consequently,
Cy ⊂ Cx.

(2) =⇒ (3): Let Cy ⊂ Cx. Then N(x) =
⋂{K : K ∈

Cx} ⊂ ⋂{K : K ∈ Cy} = N(y).
(3) =⇒ (1): Let N(x) ⊂ N(y). Then x ∈ N(x) ⊂ N(y).
(2) =⇒ (4): Let Cy ⊂ Cx. Then C − Cx ⊂ C − Cy , and

hence
⋃

(C−Cx) ⊂ ⋃
(C−Cy). So D(y) = U −⋃

(C−Cy) ⊂
U − (C − Cx) = D(x).

(4) =⇒ (5): Let D(y) ⊂ D(x). Then y ∈ D(y) ⊂ D(x).
(5) =⇒ (2): Let y ∈ D(x). Then y �∈ ⋃

(C−Cx). So y �∈ K
for each K ∈ C − Cx, i.e., for each K ∈ C, if K �∈ Cx, then
K �∈ Cy . Consequently, if K ∈ Cy , then K ∈ Cx. This proves
that Cy ⊂ Cx.

Let (U, C) be a covering approximation space. In this paper,
we call {N(x) : x ∈ U} forms a partition of U , if for each
pair x, y ∈ U , N(x) = N(y) or N(x)

⋂
N(y) = ∅.

Lemma 3.2: Let (U ;D) be a covering approximation space.
Then the following are equivalent.

(1) (U ;D) is a Gr-covering approximation space.
(2) ∀x, y ∈ U(x ∈ N(y) =⇒ y ∈ N(x)).
(3) {N(x) : x ∈ U} forms a partition of U .
(4) ∀x, y ∈ U(x ∈ N(y) =⇒ N(x) = N(y)).

Proof: (1) =⇒ (2): Assume that (U ;D) is a Gr-covering
approximation space. Let x, y ∈ U and x ∈ N(y). By Lemma
3.1, y ∈ D(x). Let x ∈ K ∈ C. Since (U ;D) is a Gr-covering
approximation space, D(x) ⊂ K, and so y ∈ D(x) ⊂ K. It
follows that y ∈ N(x).

(2) =⇒ (1): Assume that (2) holds. Let x ∈ K ∈ C. If
y ∈ D(x), then x ∈ N(y) by Lemma 3.1, and hence y ∈
N(x) ⊂ K. It follows that D(x) ⊂ K.

(2) =⇒ (3): It holds by [16, Lemma 2].
(3) =⇒ (4): Assume that (3) holds. Let x, y ∈ U and x ∈

N(y). Then x ∈ N(x)
⋂

N(y) �= ∅. So N(x) = N(y).
(4) =⇒ (2): Assume that (4) holds. Let x, y ∈ U and x ∈

N(y). Then N(x) = N(y). It follows that y ∈ N(y) = N(x).

Now we give the main results as follows.

Theorem 3.3: Let (U ;D) be a Gr-covering approximation
space and X ⊂ U . If X is a definable subset of (U ;D), then X
is a both inner definable and outer definable subset of (U ;D).

Proof: Let X be a definable subset of (U ;D). Then
D(X) = D(X). By Proposition 2.8, it suffices to prove that
X is an outer definable subset of (U ;D). Let x ∈ X . For each
u ∈ U , if u ∈ N(x), then N(u) = N(x) by Lemma 3.2. Note
that x ∈ N(x)

⋂
X �= ∅. So N(u)

⋂
X = N(x)

⋂
X �= ∅. It

follows that x ∈ D(X). This proves that X ⊂ D(X). On the
other hand, let x ∈ D(X). Since D(X) = D(X), x ∈ D(X),
and so there exists u ∈ N(x) such that N(u) ⊂ X . By Lemma
3.2, x ∈ N(x) = N(u) ⊂ X . This proves that D(X) ⊂ X .
Consequently, D(X) = X , i.e., X is an outer definable subset
of (U ;D).

Theorem 3.4: Let (U ;D) be a Gr-covering approximation
space and X ⊂ U . If X is an inner definable subset of
(U ;D), then X is a both definable and outer definable subset
of (U ;D).

Proof: Let X be an inner definable subset of (U ;D).
Then D(X) = X . By Proposition 2.8, it suffices to prove that
X is an outer definable subset of (U ;D). Let x ∈ X . For each
u ∈ U , if u ∈ N(x), then N(u) = N(x) by Lemma 3.2. Note
that x ∈ N(x)

⋂
X �= ∅. So N(u)

⋂
X = N(x)

⋂
X �= ∅. It

follows that x ∈ D(X). This proves that X ⊂ D(X). On the
other hand, let x ∈ D(X). Since x ∈ N(x), N(x)

⋂
X �= ∅,

so there exists y ∈ N(x)
⋂

X . Note that y ∈ X = D(X). So
there exists z ∈ N(y) such that N(z) ⊂ X . Since y ∈ N(x)
and z ∈ N(y), by Lemma 3.2, x ∈ N(x) = N(y) = N(z) ⊂
X . This proves that D(X) ⊂ X . Consequently, D(X) = X ,
i.e., X is an outer definable subset of (U ;D).

Theorem 3.5: Let (U ;D) be a Gr-covering approximation
space and X ⊂ U . If X is an outer definable subset of
(U ;D), then X is a both definable and inner definable subset
of (U ;D).
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Proof: Let X be an outer definable subset of (U ;D).
Then D(X) = X . By Proposition 2.8, it suffices to prove that
X is an inner definable subset of (U ;D). Let x ∈ X . We
claim that N(x) ⊂ X . In fact, if N(x) �⊂ X , then there exists
y ∈ N(x) such that y �∈ X . Since D(X) = X , y �∈ D(X),
hence there exists z ∈ N(y) such that N(z)

⋂
X = ∅. Since

y ∈ N(x) and z ∈ N(y), by Lemma 3.2, N(x) = N(y) =
N(z), hence N(x)

⋂
X = N(z)

⋂
X = ∅. This contradicts

that x ∈ N(x)
⋂

X �= ∅. So N(x) ⊂ X . Note that x ∈ N(x).
It follows that x ∈ D(X). This proves that X ⊂ D(X). On the
other hand, let x ∈ D(X). Then there exists u ∈ N(x) such
that N(u) ⊂ X . By Lemma 3.2, x ∈ N(x) = N(u) ⊂ X .
This proves that D(X) ⊂ X . Consequently, D(X) = X , i.e.,
X is an inner definable subset of (U ;D).

Remark 3.6: G1-covering approximation spaces, G2-cover-
ing approximation spaces and G3-covering approximation
spaces are investigated in [3], [4], and it is known that
G3-covering approximation spaces =⇒ G2-covering approx-
imation spaces =⇒ G1-covering approximation spaces =⇒
Gr-covering approximation spaces ([4, Theorem 4.1]). In
addition, Each Pawlak approximation space is a Gr-covering
approximation spaces ([3, Remark 3.4]). So conclusion in
Theorem 3.3 (resp. Theorem 3.4, Theorem 3.5) holds for Gr-
covering approximation spaces (resp. G1-covering approxima-
tion spaces, G2-covering approximation spaces, G3-covering
approximation spaces).

IV. CONCLUSION

In this paper, we give some positive answers of Question
1.2 for Gr-covering approximation spaces. However, we do
not know that whether “Gr-” can be omitted. More precisely,
the following question is still open.

Question 4.1: Let (U ;D) be a covering approximation
space and X ⊂ U .

(1) Does D(X) = X imply D(X) = X?
(2) Does D(X) = X imply D(X) = X?
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