Search results for: The coupled Burgers equation
1552 An H1-Galerkin Mixed Method for the Coupled Burgers Equation
Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang
Abstract:
In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.
Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15501551 Numerical Study of Some Coupled PDEs by using Differential Transformation Method
Authors: Reza Abazari, Rasool Abazari
Abstract:
In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.
Keywords: Coupled Korteweg-de Vries(KdV) equation, Coupled Burgers equation, Coupled Schrödinger equation, differential transformation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30141550 Dust Acoustic Shock Waves in Coupled Dusty Plasmas with Kappa-Distributed Ions
Authors: Hamid Reza Pakzad
Abstract:
We have considered an unmagnetized dusty plasma system consisting of ions obeying superthermal distribution and strongly coupled negatively charged dust. We have used reductive perturbation method and derived the Kordeweg-de Vries-Burgers (KdV-Burgers) equation. The behavior of the shock waves in the plasma has been investigated.
Keywords: Shock, Soliton, Coupling, Superthermal ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031549 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7441548 Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
Authors: Kelong Zheng, Jinsong Hu,
Abstract:
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable.
Keywords: Generalized Rosenau-Burgers equation, difference scheme, stability, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671547 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
Authors: M. Zarebnia, R. Parvaz
Abstract:
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.
Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36981546 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients
Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar
Abstract:
We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301545 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations
Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir
Abstract:
A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.
Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59481544 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3661543 Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation
Authors: Anupma Bansal
Abstract:
We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.
Keywords: Klein-Gordon-Schödinger Equation, Lie Classical Method, Exact Solutions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45341542 Exact Three-wave Solutions for High Nonlinear Form of Benjamin-Bona-Mahony-Burgers Equations
Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi
Abstract:
By means of the idea of three-wave method, we obtain some analytic solutions for high nonlinear form of Benjamin-Bona- Mahony-Burgers (shortly BBMB) equations in its bilinear form.
Keywords: Benjamin-Bona-Mahony-Burgers equations, Hirota's bilinear form, three-wave method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781541 Mathematical Approach for Large Deformation Analysis of the Stiffened Coupled Shear Walls
Authors: M. J. Fadaee, H. Saffari, H. Khosravi
Abstract:
Shear walls are used in most of the tall buildings for carrying the lateral load. When openings for doors or windows are necessary to be existed in the shear walls, a special type of the shear walls is used called "coupled shear walls" which in some cases is stiffened by specific beams and so, called "stiffened coupled shear walls". In this paper, a mathematical method for geometrically nonlinear analysis of the stiffened coupled shear walls has been presented. Then, a suitable formulation for determining the critical load of the stiffened coupled shear walls under gravity force has been proposed. The governing differential equations for equilibrium and deformation of the stiffened coupled shear walls have been obtained by setting up the equilibrium equations and the moment-curvature relationships for each wall. Because of the complexity of the differential equation, the energy method has been adopted for approximate solution of the equations.Keywords: Buckling load, differential equation, energy method, geometrically nonlinear analysis, mathematical method, Stiffened coupled shear walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16411540 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation
Authors: Montri Maleewong, Sirod Sirisup
Abstract:
The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.
Keywords: Projective integration, POD method, equation-free.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13561539 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.
Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5171538 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17061537 Mathematical Modelling of Transport Phenomena in Radioactive Waste-Cement-Bentonite Matrix
Authors: Ilija Plecas, Uranija Kozmidis-Luburic, Radojica Pesic
Abstract:
The leaching rate of 137Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a firstorder equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.
Keywords: bentonite, cement , radioactive waste, composite, disposal, diffusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22871536 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t
Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim
Abstract:
Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.
Keywords: Pell equation, Diophantine equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24011535 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4
Authors: Armend Sh. Shabani
Abstract:
Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.Keywords: Pell's equation, solutions of Pell's equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12481534 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation
Abstract:
In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.
Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731533 An Analytical Method for Solving General Riccati Equation
Authors: Y. Pala, M. O. Ertas
Abstract:
In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.
Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20401532 The Pell Equation x2 − Py2 = Q
Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan
Abstract:
Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.Keywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111531 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp
Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan
Abstract:
In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.Keywords: Diophantine equation, Pell equation, quadratic form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741530 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides
Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz
Abstract:
This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.
Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13101529 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.
Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24941528 Solution of The KdV Equation with Asymptotic Degeneracy
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).
Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271527 A New Microstrip Diplexer Using Coupled Stepped Impedance Resonators
Authors: A. Chinig, J. Zbitou, A. Errkik, L. Elabdellaoui, A. Tajmouati, A. Tribak, M. Latrach
Abstract:
This paper presents a new structure of microstrip band pass filter (BPF) based on coupled stepped impedance resonators. Each filter consists of two coupled stepped impedance resonators connected to microstrip feed lines. The coupled junction is utilized to connect the two BPFs to the antenna. This two band pass filters are designed and simulated to operate for the digital communication system (DCS) and Industrial Scientific and Medical (ISM) bands at 1.8 GHz and 2.45 GHz respectively. The proposed circuit presents good performances with an insertion loss lower than 2.3 dB and isolation between the two channels greater than 21 dB. The prototype of the optimized diplexer have been investigated numerically by using ADS Agilent and verified with CST microwave software.
Keywords: Band Pass Filter, coupled junction, coupled stepped impedance resonators, diplexer, insertion loss, isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38241526 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30141525 Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.
Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611524 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model
Authors: Hidetoshi Konno, Akio Suzuki
Abstract:
The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.
Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16021523 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method
Authors: Nisha Goyal, R.K. Gupta
Abstract:
This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.
Keywords: Sawada-Kotera-Kadomtsev-Petviashivili equation, Bogoyavlensky-Konoplechenko equation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623