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Abstract—Let k ≥ 1 and t ≥ 0 be two integers and let d =
k2 + k be a positive non-square integer. In this paper, we consider
the integer solutions of Pell equation x2 − dy2 = 2t. Further we
derive a recurrence relation on the solutions of this equation.
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I. PRELIMINARY FACTS.

Let d �= 1 be a positive non-square integer and N be any
fixed positive integer. Then the equation

x2 − dy2 = ±N (1)

is known as Pell equation and is named after John Pell (1611-
1685), a mathematician who searched for integer solutions to
equations of this type in the seventeenth century. Ironically,
Pell was not the first to work on this problem, nor did
he contribute to our knowledge for solving it. Euler (1707-
1783), who brought us the ψ-function, accidentally named the
equation after Pell, and the name stuck. For N = 1, the Pell
equation

x2 − dy2 = ±1 (2)

is known as the classical Pell equation and was first studied by
Brahmagupta (598-670) and Bhaskara (1114-1185), (see [1]).
Its complete theory was worked out by Lagrange (1736-1813),
not Pell. It is often said that Euler (1707-1783) mistakenly
attributed Brouncker’s (1620-1684) work on this equation to
Pell. However the equation appears in a book by Rahn (1622-
1676) which was certainly written with Pell’s help: some
say entirely written by Pell. Perhaps Euler knew what he
was doing in naming the equation. Baltus [2], Kaplan and
Williams [5], Lenstra [7], Matthews [8], Mollin, Poorten and
Williams [9], Stevenhagen [10], Tekcan [12,13,14], and the
others consider some specific Pell equations and their integer
solutions. Further details on Pell equations can be found in
[3,10].

The Pell equation in (2) has infinitely many integer solutions
(xn, yn) for n ≥ 1. The first non-trivial positive integer solu-
tion (x1, y1) (in this case x1 or x1+y1

√
d is minimum) of this

equation is called the fundamental solution, because all other
solutions can be (easily) derived from it. In fact, if (x1, y1)
is the fundamental solution of x2 − dy2 = 1, then the n-th
positive solution of it, say (xn, yn), is defined by the equality

xn + yn

√
d = (x1 + y1

√
d)n (3)

for integer n ≥ 2. (Furthermore, all nontrivial solutions can be
obtained considering the four cases (±xn,±yn) for n ≥ 1).
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There are several methods for finding the fundamental
solution of Pell’s equation x2 − dy2 = 1 for a positive non-
square integer d, e.g., the cyclic method [4, p.30], known in
India in the 12-th century, or the slightly less efficient but
more regular English method (17-th century) which produce
all solutions of x2 − dy2 = 1 [4, p.32]. But the most efficient
method for finding the fundamental solution is based on the
simple finite continued fraction expansion of

√
d. We can

describe it as follows (see [2] and also [6, p.154]): Let

[a0; a1, a2, · · · , ar, 2a0]

be the simple continued fraction of
√

d, where a0 = �√d�.
Let p0 = a0, p1 = 1 + a0a1, q0 = 1, q1 = a1. In general

pn = anpn−1 + pn−2 (4)

qn = anqn−1 + qn−2

for n ≥ 2. Then the fundamental solution of x2 − dy2 = 1 is

(x1, y1) =

⎧⎨
⎩

(pr, qr) if r is odd

(p2r+1, q2r+1) if r is even.
(5)

On the other hand, in connection with (1) and (2), it is well
known that if (u1, v1) and (xn−1, yn−1) are integer solutions
of x2 − dy2 = ±N and x2 − dy2 = 1, respectively, then
(un, vn) is also a positive solution of x2 − dy2 = ±N , where

un +
√

dvn = (xn−1 +
√

dyn−1)(u1 +
√

dv1) (6)

for n ≥ 2.

II. THE PELL EQUATION x2 − dy2 = 2t .

In this work we will define by recurrence an infinite se-
quence of positive solutions of the Pell equation x2−dy2 = 2t,
where d = k2 + k with k ≥ 1 an integer and t ≥ 0 is also an
integer. First we consider the case t = 0, that is, the classical
Pell equation

x2 − (k2 + k)y2 = 1.

Then we can give the following theorem.

Theorem 2.1: Let d = k2 + k with k ≥ 1. Then

1) The continued fraction expansion of
√

d is

√
d =

⎧⎨
⎩

[1; 2] if k = 1

[k; 2, 2k] otherwise.

2) The fundamental solution of x2 − dy2 = 1 is

(x1, y1) = (2k + 1, 2).
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3) For n ≥ 4,

xn = (4k + 3)(xn−1 − xn−2) + xn−3

yn = (4k + 3)(yn−1 − yn−2) + yn−3.

Proof: 1) Let k = 1. Then is is easily seen that the conti-
nued fraction expansion of

√
2 is [1; 2]. Now let k ≥ 2. Then√

k2 + k = k + (
√

k2 + k − k)

= k +
1
1√

k2+k−k

= k +
1

√
k2+k+k

k

= k +
1

2 +
√

k2+k−k
k

= k +
1

2 + 1
k√

k2+k−k

= k +
1

2 + 1√
k2+k+k

= k +
1

2 + 1

2k+(
√

k2+k−k)
.

Therefore the continued fraction expansion of
√

d is

[k; 2, 2k].

2) The case k = 1 is clear since (x1, y1) = (3, 2) is clearly
a minimum solution of x2 − 2y2 = 1. On the other hand, for
k ≥ 2, using the method defined in the previous section, we
get r = 1 with a0 = k, a1 = 2. Hence, (x1, y1) = (p1, q1) =
(2k+1, 2) is the fundamental solution since p0 = a0 = k, p1 =
1 + a0a1 = 1 + (k)2 = 2k + 1 and q0 = 1, q1 = a1 = 2 by
(4) and (5).

3) Note that by (3), if (x1, y1) is the fundamental solution
of x2 − (k2 + k)y2 = 1, then the other solutions (xn, yn) of
x2 − (k2 + k)y2 = 1 can be derived by using the equalities
xn +

√
dyn = (x1 +

√
dy1)n for n ≥ 2, in other words,(

xn

yn

)
=

(
x1 dy1

y1 x1

)n (
1
0

)

for n ≥ 2. Therefore it can be shown by induction on n that

xn = (4k + 3)(xn−1 − xn−2) + xn−3

and also

yn = (4k + 3)(yn−1 − yn−2) + yn−3

for n ≥ 4.

Now we consider the general case, that is the case

x2 − (k2 + k)y2 = 2t

for t ≥ 1. But we have to consider the problem in two cases:
k = 1 and k ≥ 2. Note that we denote the integer solutions
of x2 − (k2 + k)y2 = 2t by (un, vn), and denote the integer

solutions of x2 − (k2 + k)y2 = 1 by (xn, yn). Then we have
the following theorem.

Theorem 2.2: Let k = 1 and let t ≥ 1 be an arbitrary
integer. Define a sequence {(un, vn)} of positive integers by

(u1, v1) =

⎧⎪⎪⎨
⎪⎪⎩

(
2

t+1
2 , 2

t−1
2

)
if t is odd

(
3.2

t
2 , 2

t
2+1

)
if t is even

and

un =

⎧⎨
⎩

2
t+1
2 xn−1 + 2

t+1
2 yn−1 if t is odd

3.2
t
2 xn−1 + 2

t
2+2yn−1 if t is even

vn =

⎧⎨
⎩

2
t−1
2 xn−1 + 2

t+1
2 yn−1 if t is odd

2
t
2+1xn−1 + 3.2

t
2 yn−1 if t is even,

where {(xn, yn)} is the sequence of positive solutions of x2−
2y2 = 1. Then

1) (un, vn) is a solution of x2 − 2y2 = 2t for any integer
n ≥ 1.

2) For n ≥ 2,

un+1 = 3un + 4vn

vn+1 = 2un + 3vn.

3) For n ≥ 4,

un = 7(un−1 − un−2) + un−3

vn = 7(vn−1 − vn−2) + vn−3.

Proof: 1) Let us assume t is odd. Then it is easily seen
that

(u1, v1) =
(
2

t+1
2 , 2

t−1
2

)

is a solution of x2 − 2y2 = 2t since

u2
1 − dv2

1 =
(
2

t+1
2

)2

− 2
(
2

t−1
2

)2

= 2t+1 − 2.2t−1

= 2t(2 − 1)
= 2t.

On the other hand, as it was said previously, (un, vn) is
also a solution for n ≥ 2. Now we can prove this as follows.
Recall that (xn−1, yn−1) is a solution of x2 − 2y2 = 1, that
is,

x2
n−1 − 2y2

n−1 = 1.

Further we see as above that (u1, u1) is a solution of x2 −
2y2 = 2t, that is,

u2
1 − 2u2

1 = 2t.
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Combining these two results we find that

u2
n − 2v2

n =
(
2

t+1
2 xn−1 + 2

t+1
2 yn−1

)2

−2
(
2

t−1
2 xn−1 + 2

t+1
2 yn−1

)2

= 2t+1x2
n−1 + 2.2

t+1
2 .2

t+1
2 xn−1yn−1

+2t+1y2
n−1

−2

⎛
⎝ 2t−1x2

n−1+
2.2

t−1
2 .2

t+1
2 xn−1yn−1

+2t+1y2
n−1

⎞
⎠

= x2
n−1

(
2t+1 − 2.2t−1

)
+xn−1yn−1

(
2t+2 − 2t+2

)
+y2

n−1

(
2t+1 − 2.2t+1

)
= 2t

(
x2

n−1 − 2y2
n−1

)
= 2t.

Therefore (un, vn) is a solution of x2 − 2y2 = 2t.

2) Note that

un+1 + vn+1

√
d

= (xn + yn

√
d)(u1 + v1

√
d)

= (x1 + y1

√
d)n(u1 + v1

√
d)

= (x1 + y1

√
d)

[
(x1 + y1

√
d)n−1(u1 + v1

√
d)

]
= (x1 + y1

√
d)

[
(xn−1 + yn−1

√
d)(u1 + v1

√
d)

]
= (x1 + y1

√
d)(un + vn

√
d)

by (3) and (6). Therefore un+1 = 3un + 4vn and vn+1 =
2un + 3vn since

un+1 + vn+1

√
2

= (3 + 2
√

2)(un + vn

√
2)

= 3un + 3
√

2vn + 2
√

2un + 4vn

= 3un + 4vn + (2un + 3vn)
√

2.

3) Recall that

un =
(
2

t+1
2 xn−1 + 2

t+1
2 yn−1

)

and also
un+1 = 3un + 4vn.

Combining these two results we find by induction on n that

un = 7(un−1 − un−2) + un−3.

Similarly it can be shown that

vn = 7(vn−1 − vn−2) + vn−3

for n ≥ 4.
The case t is even is similar. So we omit it here.

Now we consider the case k ≥ 2.

Theorem 2.3: Let k and t be arbitrary integers with k ≥ 2
and t ≥ 1 is even. Define a sequence {(un, vn)} of positive
integers by

(u1, v1) =
(
2

t
2 (2k + 1), 2

t
2+1

)

and

un = 2
t
2 (2k + 1)xn−1 + 2

t
2+1(k2 + k)yn−1

vn = 2
t
2+1xn−1 + 2

t
2 (2k + 1)yn−1,

where {(xn, yn)} is the sequence of positive solutions of x2−
(k2 + k)y2 = 1. Then

1) (un, vn) is a solution of x2 − (k2 + k)y2 = 2t for any
integer n ≥ 1.

2) For n ≥ 2,

un+1 = (2k + 1)un + (2k2 + 2k)vn

vn+1 = 2un + (2k + 1)vn.

3) For n ≥ 4,

un = (4k + 3)(un−1 − un−2) + un−3

vn = (4k + 3)(vn−1 − vn−2) + vn−3.

Proof: 1) It is easily seen that

(u1, v1) =
(
2

t
2 (2k + 1), 2

t
2+1

)

is a solution of x2 − (k2 + k)y2 = 2t since

u2
1 − (k2 + k)u2

1 =
(
2

t
2 (2k + 1)

)2

− (k2 + k)
(
2

t
2+1

)2

= 2t(4k2 + 4k + 1) − (k2 + k)(2t+2)
= 2t(4k2 + 4k + 1 − 4k2 − 4k)
= 2t.

Note that by definition, (xn−1, yn−1) is a solution of x2 −
(k2 + k)y2 = 1, that is,

x2
n−1 − (k2 + k)y2

n−1 = 1. (7)

Also we see as above that (u1, v1) is a solution of x2 −
(k2 + k)y2 = 2t, that is,

u2
1 − (k2 + k)v2

1 = 2t. (8)
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Applying (7) and (8), we get

u2
n − (k2 + k)v2

n

=
(

2
t
2 (2k + 1)xn−1 + 2

t
2+1(k2 + k)yn−1

)2

−(k2 + k)
(

2
t
2+1xn−1 + 2

t
2 (2k + 1)yn−1

)2

= 2t(2k + 1)2x2
n−1

+2.2
t
2 .2

t
2+1(2k + 1)(k2 + k)xn−1yn−1

+2t+2(k2 + k)2y2
n−1

−(k2 + k)

⎛
⎝ 2t+2x2

n−1

+2.2
t
2+1.2

t
2 (2k + 1)xn−1yn−1

+2t(2k + 1)2y2
n−1

⎞
⎠

= x2
n−1

(
2t(2k + 1)2 − 2t+2(k2 + k)

)

+xn−1yn−1

(
2.2

t
2 .2

t
2+1(2k + 1)(k2 + k)

−(k2 + k)2.2
t
2+12

t
2 (2k + 1)

)

+y2
n−1

(
2t+2(k2 + k)2 − (k2 + k)2t(2k + 1)2

)
= x2

n−1(2
t) − y2

n−1

(
2t(k2 + k)

)
= 2t

(
x2

n−1 − (k2 + k)y2
n−1

)
= 2t.

Therefore (un, vn) is a solution of x2 − (k2 + k)y2 = 2t.

2) Recall that

un+1 + vn+1

√
d = (x1 + y1

√
d)(un + vn

√
d)

Therefore

un+1 = x1un + 2y1vn

and

vn+1 = y1un + x1vn.

So

un+1 = (2k + 1)un + (2k2 + 2k)vn

and

vn+1 = 2un + (2k + 1)vn

since x1 = 2k + 1 and y1 = 2.

3) Applying the equalities

un = 2
t
2 (2k + 1)xn−1 + 2

t
2+1(k2 + k)yn−1

and

un+1 = (2k + 1)un + (2k2 + 2k)vn

we find by induction on n that

un = (4k + 3)(un−1 − un−2) + un−3

for n ≥ 4. Similarly it can be shown that

vn = (4k + 3)(vn−1 − vn−2) + vn−3.

Example 2.1: Let k = 1 and let t = 2. Then by Theorem
2.2, (u1, v1) = (6, 4) is a solution of x2 − 2y2 = 4, and some
other solutions are

(u2, v2) = (34, 24)
(u3, v3) = (198, 140)
(u4, v4) = (1154, 816)
(u5, v5) = (6726, 4756)
(u6, v6) = (39202, 27720)
(u7, v7) = (228486, 161564).

Let t = 7. Then (u1, v1) = (16, 8) is a solution of x2 −
2y2 = 128, and some other solutions are

(u2, v2) = (80, 56)
(u3, v3) = (464, 328)
(u4, v4) = (2704, 1912)
(u5, v5) = (15760, 11144)
(u6, v6) = (91856, 64952)
(u7, v7) = (535376, 378568).

Example 2.2: Let k = 6 and let t = 4. Then by Theorem
2.3, (u1, v1) = (52, 8) is a solution of x2 − 42y2 = 16, and
some other solutions are

(u2, v2) = (1348, 208)
(u3, v3) = (34996, 5400)
(u4, v4) = (908548, 140192)
(u5, v5) = (23587252, 3639592)
(u6, v6) = (612360004, 94489200)
(u7, v7) = (15897772852, 2453079608).

Remark. Note that in Theorem 2.3, we only consider the
case t is even. When we consider the case t is odd, then we
find that there is no solution (u1, v1) of x2 − (k2 + k)y2 =
2t for some values of k, or there is a solution (u1, v1) of
x2 − (k2 + k)y2 = 2t for some values of k. For example for
k = 7 and t = 3, we find that (u1, v1) = (8, 1) is a solution
of x2 − 56y2 = 8. Similarly for k = 7 and t = 7, we find
that (u1, v1) = (32, 4) is a solution of x2 − 56y2 = 128.
But for k = 10 and for every odd t, there is no solution of
x2 − 110y2 = 2t.
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