
 

 

  
Abstract—In this paper, the differential quadrature method is 

applied to simulate natural convection in an inclined cubic cavity 
using velocity-vorticity formulation. The numerical capability of the 
present algorithm is demonstrated by application to natural convection 
in an inclined cubic cavity. The velocity Poisson equations, the 
vorticity transport equations and the energy equation are all solved as 
a coupled system of equations for the seven field variables consisting 
of three velocities, three vorticities and temperature. The coupled 
equations are simultaneously solved by imposing the vorticity 
definition at boundary without requiring the explicit specification of 
the vorticity boundary conditions. Test results obtained for an inclined 
cubic cavity with different angle of inclinations for Rayleigh number 
equal to 103, 104, 105 and 106 indicate that the present coupled solution 
algorithm could predict the benchmark results for temperature and 
flow fields. Thus, it is convinced that the present formulation is 
capable of solving coupled Navier-Stokes equations effectively and 
accurately. 
 

Keywords—Natural convection, velocity-vorticity formulation, 
differential quadrature (DQ).  

I. INTRODUCTION 
OMPUTATION of incompressible Navier-Stokes 
equations is an important area in CFD related fields in 

science and engineering. With the development of a wide range 
of numerical schemes and algorithms, obtaining numerical 
solution of the Navier-Stokes equations now has become much 
easier compared to the previous decades. However, there is a 
continuous research going on in the development of new 
numerical algorithms as the CFD is being used as a modeling 
tool in other areas of science as well. The velocity-vorticity 
formulation, pioneered by Fasel [1] is considered to be an 
alternate form of the Navier-Stokes equations without 
involving the pressure term.  

Generally the vorticity boundary values are determined 
explicitly using a second order accurate Taylor’s series 
expansion scheme while computing flow fields using the 
velocity-vorticity form of the Navier-Stokes equations. Hence 
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care must be taken to assure accurate computation of the 
vorticity values at the boundaries by using finer mesh near the 
boundaries when lower order schemes are used for vorticity 
definition. The use of the differential quadrature method 
enables the computation of vorticity definition with higher 
order polynomials. Furthermore, when a coupled numerical 
scheme involving a global method of differential quadrature 
(DQ) method is used to solve the governing equations, the 
explicit specification of vorticity definition at the boundary is 
completely eliminated, resulting in a simplified computational 
procedure. 
 The DQ method was first pioneered by Bellman et al. [2] to 
approximate the derivative of a smooth function and has been 
successfully implemented for solving many engineering 
problems [3]. The present study proposes a novel idea to solve 
three-dimensional Navier-Stokes equations by efficiently 
exploiting the advantages of both the velocity-vorticity form of 
the Navier-Stokes equations and the DQ method. Natural 
convection in a differentially heated inclined cubic cavity is 
represented by continuity equation, momentum equations and 
energy equation, which are coupled due to the buoyancy term 
appearing in the momentum equation. Hence natural 
convection in an inclined cubic cavity is considered to be the 
best example problem to test the numerical capability of the 
proposed coupled algorithm. All the seven field variables 
involving three velocities, three vorticities and temperature are 
solved using a single global matrix as a coupled system of 
variables. 

The proposed numerical scheme is applied to determine the 
velocity, vorticity and temperature variations for natural 
convection problem in a differentially heated inclined cubic 
cavity for Rayleigh number range from 310  to 610 . Numerical 
formulation, solution procedure and comparisons of the present 
results with those obtained by other numerical schemes are 
presented in the following sections. 

II. DIFFERENTIAL QUADRATURE METHOD 
The DQ method replaces a given spatial derivative of a 

function ( )f x  by a linear weighted sum of the function values 
at the discrete sample points considered along a coordinate 
direction, resulting in a set of algebraic equations. Hence the 
DQ method can be used to obtain numerical solution of partial 
differential equations with higher order accuracy. For a 
function of three variables ( , , )f x y z , the p th order 
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derivatives, q th order derivatives and r th order derivatives of 
the function with respect to x , y  and z  coordinates can be 
obtained as: 

( )( )
,

1
( , , ) ( , , ), 1,2,..., 1

L pp
x i j k l j ki l

l
f x y z A f x y z p L

=
= = −∑       (1) 

( ) ( )
,

1
( , , ) ( , , ), 1, 2,..., 1

Mq q
y i j k j m i m k

m
f x y z B f x y z q M

=
= = −∑     (2) 

( )( )
,

1
( , , ) ( , , ), 1, 2,..., 1

N rr
z i j k i j nk n

n
f x y z C f x y z r N

=
= = −∑       (3) 

for 1,2,..., ;i L=   1,2,..., ;j M=   1,2,...,k N=  
where l , m , n  are the indices for the grid points in the x , y  
and z coordinates respectively, , ,L M N  are the number of grid 
points in the  x , y  and z directions respectively and 

( ) ( )( )
,, ,, ,p rq

j mi l k nA B C  are the weighting coefficients. The first order 

weighting coefficients (1) (1)(1)
,, ,, ,j mi l k nA B C  can be determined as 

follows: 
(1)

(1)
, (1)

( )
, , 1, 2,..., ,

( ) ( )
i

i j
i j j

L x
A i j L but j i

x x L x
= = ≠

−
        (4) 

(1)
(1)
, (1)

( )
, , 1, 2,..., ,

( ) ( )
i

i j
i j j

M y
B i j M but j i

y y M y
= = ≠

−
    (5) 

(1)
(1)
, (1)

( )
, , 1,2,..., ,

( ) ( )
i

i j
i j j

N z
C i j N but j i

z z N z
= = ≠

−
      (6) 

in which 
(1)

1,

(1)

1,

(1)

1,

( ) ( ),

( ) ( ),

( ) ( )

L
i i j

j j i

M
i i j

j j i

N
i i j

j j i

L x x x

M y y y

N z z z

= ≠

= ≠

= ≠

= −∏

= −∏

= −∏

 

Similarly the weighting coefficients for the second-and 
higher-order derivatives can be obtained as 

( 1)
,( ) ( 1) (1)

, , ,( ),

, 1,2,..., , , 2,3,..., 1

p
i jp p

i j i i i j
i j

A
A p A A

x x

i j L but j i l L

−
−= −

−

= ≠ = −

                    (7) 

( 1)
,( ) ( 1) (1)

, , ,( ),

, 1,2,..., , , 2,3,..., 1

q
i jq q

i j i i i j
i j

B
B q B B

y y

i j M but j i m M

−
−= −

−

= ≠ = −

               (8) 

( 1)
,( ) ( 1) (1)

, , ,( ),

, 1,2,..., , , 2,3,..., 1

r
i jr r

i j i i i j
i j

C
C r C C

z z

i j N but j i n N

−
−= −

−

= ≠ = −

                   (9) 

It should be noted from the above equations that the 
weighting coefficients of the second and higher-order 
derivatives can be computed from the first-order derivatives 
themselves. 

III. GOVERNING EQUATIONS  
The governing equations for natural convection can be 

described by the incompressible Navier-Stokes equations and 
the energy equation. Assuming the Boussinesq approximation, 
the velocity-vorticity form of the Navier-Stokes equations can 
be written in non-dimensional form as follows: 
Velocity Poisson equations 

2u ω∇ = −∇×                                                 (10) 
Vorticity transport equations 

2( ) ( ) Prv v Pr Ra Tg
t
ω ω ω ω∂

+ ⋅∇ = ⋅∇ + ⋅∇ − ∇×
∂

        (11) 

Energy equation 
2( )T v T T

t
∂

+ ⋅∇ = ∇
∂

                                      (12) 

The computational domain is discretized using a Cartesian 
coordinate frame with x y−  representing the horizontal plane 
and z  directing in the vertical direction. In the 
velocity-vorticity form of the Navier-Stokes equations, the 
vorticity vector is defined as 

u×∇=ω                                             (13) 
Equations (10-12) are the final form of the governing equations 
that characterize the flow and heat transfer during a natural 
convection process. These equations have to be solved in a 
computational domain Ω  which is enclosed by a solid 
boundary Γ . For the problem of natural convection in a 
differentially heated cubic cavity, no-slip velocity boundary 
conditions are assumed on all the boundary walls. 

IV. NUMERICAL SOLUTION 
Application of the DQ method to spatial discretization of the 

governing equations results in a set of algebraic equations. For 
example, the velocity Poisson equation in the x − direction  is 
approximated using the DQ method to obtain the velocity 
component in the one coordinate direction as follows, 

(2) (2)(2)
, , , , , , ,, ,

1 1 1

(1)(1)
, , , , ,,

1 1
0

L M N
l j k j m i m k i j ni l k n

l m n
M N

j m i m k i j nk n
m n

A u B u C u

B Cζ η

= = =

= =

+ +∑ ∑ ∑

+ − =∑ ∑
            (14) 

Similarly, the velocity components in the ,y−  z − directions 
also can be used the same formulas. 

The time derivatives of the convection-diffusion equation 
(vorticity transport equations and energy equation) are 
discretized using a second order accurate three-time-level 
scheme expressed as 

2

1 1
1 1 2 1 13 4 2

2

t t t
t t t t t t

v f
t

v v f
t

φ φ φ

φ φ φ φ φ φ
+ −

− − + +

∂
+ ⋅∇ = ∇ + ⇒

∂
− +

+ ⋅∇ − ⋅∇ = ∇ +
Δ

   (15) 

The convection-diffusion equation (15) is approximated by the 
DQ method as follows: 
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, , , ,

1 1
, , (2) (2)(2) 1

, , , , , , , , ,, ,
1 1 1

1

(1) (1)(1)
, , , , , , , , , , , , ,, ,

1 1 1

(3 )
( ) ( )

2
(4 ) ( )

2 2

2( )

(

i j k i j k

t tL M Ni j k t
l j k j m i m k i j n i j ki l k n

l m n
t t

L M N t
i j k l j k i j k j m i m k i j k i j ni l k n

l m n

A C f
t

t t

u A v B w C

u

φ
φ φ ξ φ

φ φ

φ φ φ

+ +
+

= = =
−

= = =

− + + −∑ ∑ ∑
Δ

= −
Δ Δ

− + +∑ ∑ ∑

+ (1) (1)(1) 1
, , , , , , , , , , , , ,, ,

1 1 1
)

L M N t
i j k l j k i j k j m i m k i j k i j ni l k n

l m n
A v B w Cφ φ φ −

= = =
+ +∑ ∑ ∑

                                (16) 
Using the above formula, the vorticity transport equations in 
the ,x− ,y−  z − directions and energy equation can be adopted 
the above method of approximation. 

In the successive time step, we used the velocity, vorticity 
and temperature components at the previous time step as the 
initial guess for the next iteration. The computations are carried 
out until steady state conditions are reached. The convergence 
criteria used in the time loop to achieve steady state conditions 
are 

1 6 1 6 1 6

1 6 1 6 1 6

1 6

( ) / 10 , ( ) / 10 , ( ) / 10

( ) / 10 , ( ) / 10 , ( ) / 10

( ) / 10

t t t t t t t t t

t t t t t t t t t

t t t

u u u v v v w w w

T T T

ξ ξ ξ η η η ζ ζ ζ

+ − + − + −

+ − + − + −

+ −

− ≤ − ≤ − ≤

− ≤ − ≤ − ≤

− ≤

  (17) 

 
TABLE I 

GRID-INDEPENDENCE STUDY RESULTS FOR  4 5 610 ,10 ,10Ra =  

Grids  Nu  410Ra =  510Ra =  610Ra =  
PSC [4] 

381  grids 
meanNu  

overNu  
2.2505 
2.0542 

4.6127 
4.3371 

8.8771 
8.6407 

Present 
321  grids 

meanNu  

overNu  
2.2532 
2.0521 

4.6238 
4.3287 

8.9091 
8.6691 

Present 
323  grids 

meanNu  

overNu  
2.2507 
2.0541 

4.6103 
4.3352 

8.9096 
8.6681 

Present 
325  grids 

meanNu  

overNu  
2.2507 
2.0541 

4.6103 
4.3352 

8.9096 
8.6681 

Present 
331  grids 

meanNu  

overNu  
2.2507 
2.0541 

4.6103 
4.3352 

8.9096 
8.6681 

V. NUMERICAL RESULTS 
The schematic diagram of the inclined cubic cavity with the 

boundary conditions for the natural convection problem is 
displayed in Fig. 1. Temperatures equal to –0.5 and 0.5 are 
enforced on the left wall at 0.5x = −  and the right wall at 

0.5x =  respectively. Numerical results obtained for the test 
problem are discussed in this section. 

 

A. Grid Independence Study  
One of the aims of the present numerical scheme is to show 

that the use of higher order polynomials for approximating the 
partial differential equations requires relatively a coarse mesh 

to achieve benchmark solutions. In order to validate the 
computer program developed to solve the governing equations 
for the natural convection problem, initially a grid 
independence study was carried out for 4 5 610 ,10 ,10Ra = . 

Further, in order to make sure that the grid independence 
study is in accordance with other numerical results, the grid 
independence study results obtained for the case of φ =0 were 
compared with the results of Tric et al. [4] who used 
pseudo-spectral Chebyshev algorithm based on the 
projection-diffusion method with a spatial resolution supplied 
by polynomial expansions. For the mesh sensitivity study, the 
mean and the overall Nusselt number values were computed for 

4 610 10Ra≤ ≤  using four different meshes. The value of 
Prandtl number was assumed as 0.71 for all these 
computations. Table I depicts the comparisons between the 
values of the mean and the overall Nusselt numbers obtained 
using the present method for the four mesh sizes and the results 
obtained by Tric et al. [4]. It can be observed that the results 
obtained by using the present numerical algorithm with the 
above four grids of size are almost in excellent agreement with 
the results of Tric et al. [4] for all the values of the Rayleigh 
numbers considered in this study.  

 
Fig. 1 Layout of the problem 

B. Effect of Angle of Inclination on Natural Convection 
Phenomenon References 

In order to capture the three-dimensional effect of the 
temperature fields, the temperature variations on the 
mid-planes along the principal axes serve as a visual 
representation of the temperature variations throughout the 
cavity due to the buoyancy-induced flows. Figs. 2(a) to 2(d) 
show the temperature contours on x z−  plane at 0.5y =  for 

different angles of inclination for 510Ra = . As far as the 
convective heat transport is concerned this is the principal 
plane that indicates the heat transfer phenomena because this 
plane consists of the axes of the temperature differentials and 
the gravitational direction. The temperature maps are very close 
to the hot and the cold walls compared to the other sides, 
because greater temperature gradients are observed only at 
these regions. As the other sides are kept adiabatic, the 
temperature contours are always normal to these sides as 
observed in the above figures. Further the increase in the angle 
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of inclination results in diagonally parallel isotherms instead of 
the nearly horizontal isotherms observed at 0φ = . 

Apart from testing the code for the present formulation with 
respect to the Nusselt numbers, it is also required to verify for 
the flow fields. The characteristics of the natural convection 
phenomenon can be well understood by plotting the velocity 
vectors on the various symmetric mid-planes along the 
principal axes. Figs. 3(a), 3(b) represent the velocity vectors 
plotted on x z−  plane at 0.5y =  symmetric plane of the 

cavity for 0 ,30φ = , respectively at 510Ra = . As the angle 
of inclination increases the effect of decreased buoyancy forces 
is felt on the flow pattern. With increase in the angle of 
inclination, the velocity gradient decreases near the vertical 
walls as observed in the above figures. 
 

TABLE II 
NUMERICAL RESULTS FOR 4 5 610 ,10 ,10Ra =  AT DIFFERENT ANGLES 

φ  Ra  meanNu  overNu  

0  410  2.2507 2.0541 

15   1.9858 1.8425 

30   1.6800 1.5894 

45   1.3913 1.3434 

60   1.1720 1.1524 

75   1.0331 1.0377 

90   1.0152 1.0152 

0  510  4.6103 4.3352 

15   3.9690 3.7731 

30   3.0241 2.9014 

45   2.0385 1.9791 

60   1.3840 1.3623 

75   1.0367 1.0789 

90   1.1603 1.1603 

0  610  8.9096 8.6681 

15   7.5445 7.3630 

30   5.3303 5.2133 

45   2.8754 2.8202 

60   1.5829 1.5585 

75   1.0084 1.1184 

90   1.8237 1.8237 
 

The capability of the present numerical scheme can be tested 
by plotting the vorticity contours at the 0.5y = plane as shown 

in Fig. 4 for different angles of inclination for 510Ra = . As the 
angle of inclination increases, the buoyancy force is not 
sufficient enough to generate the convective current of the fluid. 
Hence the expected increased fluid convection due to decrease 
in the angle of inclination.  

Nusselt number is an important non-dimensional parameter 

in convective heat transfer study. The mean value of the 
Nusselt number computed for the isothermal walls are shown 
as variations along the y − direction in Figs. 5(a) to 5(d) for 

3 4 5 610 ,10 ,10 ,10Ra =  respectively. Also, Table II shows the 
comparison of the mean value and overall value of the Nusselt 
number for 4 5 610 ,10 ,10Ra =  at different angles. An initial look 
on the range of the Nusselt number values shown on these 
figures clearly indicates that the Nusselt number increases with 
increase in the value of the Rayleigh number as expected. A 
symmetric variation is observed in all these figures. However 
the number of peaks and their positions vary with the value of 
the Rayleigh number. The maximum value of the Nusselt 
number is achieved only for 0φ =  as expected. As the angle 
of inclination increases, the maximum value of the Nusselt 
number decreases as seen from these figures for the cases of 

3 4 510 ,10 ,10Ra = . The results discussed for the inclined cavity 
demonstrate that the present numerical algorithm has correctly 
predicted the convective heat transport process inside the cavity 
for different values of angle of inclination. The proposed 
algorithm could enforce the vorticity boundary values 
implicitly. This fact is verified by the expected results predicted 
by the present algorithm for the flow and the temperature fields. 

VI. CONCLUSION  
A coupled numerical algorithm proposed based on the 

velocity-vorticity formulation and the DQ method was tested 
for natural convection in a differentially heated inclined cubic 
cavity. Test results obtained for Rayleigh number in the range 
from 103 to 106 at the angle of incidence ( 0φ = ) show close 
agreements with other numerical scheme, producing the 
expected flow and temperature fields. Moreover, the salient 
characteristics of the different angle of incidence, 0 90φ≤ ≤  
of natural convection in an inclined cavity are well-illustrated 
in the present study. 
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                           (c)                                               (d) 
Fig. 2 Temperature contours at 0.5y =  plane for 510Ra =  in a 

different angle (a) 00φ =  (b) 030φ =  (c) 060φ =  (d) 090φ =  
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Fig. 3 Velocity vectors at 0.5y =  plane for 510Ra =  in a different 

angle (a) 00φ =  (b) 030φ =  

   (a)                                              (b) 
 
 
 
 
 
 
 
 
 
 
  (c)                                               (d) 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Vorticity contours at 0.5y =  plane for 510Ra =  in a 

different angle (a) 00φ =  (b) 030φ = (c) 060φ =  (d) 075φ =  
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Fig. 5 Distribution of the mean Nusselt number along the 
−y direction for (a) 310Ra =   (b) 410Ra =   (c) 510Ra =   (d)  

610Ra =  
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