**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1783

# Search results for: ordinary differential equation

##### 1783 The Global Stability Using Lyapunov Function

**Authors:**
R. Kongnuy,
E. Naowanich,
T. Kruehong

**Abstract:**

**Keywords:**
Age Group,
Leptospirosis,
Lyapunov Function,
Ordinary Differential Equation.

##### 1782 Stability of Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

**Keywords:**
Fractional calculus,
fractional differential equation,
Lane-Emden equation,
Riemann-Liouville fractional operators,
Volterra integral equation.

##### 1781 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

**Authors:**
H. N. Agiza,
M. A. Sohaly,
M. A. Elfouly

**Abstract:**

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs*.*

**Keywords:**
Parkinson's disease,
Step method,
delay differential equation,
simulation.

##### 1780 An Analytical Method for Solving General Riccati Equation

**Authors:**
Y. Pala,
M. O. Ertas

**Abstract:**

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

**Keywords:**
Riccati Equation,
ordinary differential equation,
nonlinear differential equation,
analytical solution,
proper solution.

##### 1779 Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

**Authors:**
Anupma Bansal,
Rajeev Budhiraja,
Manoj Pandey

**Abstract:**

**Keywords:**
Nonlinear time-fractional hyperbolic PDE,
Lie
Classical method,
exact solutions.

##### 1778 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

**Authors:**
Fuziyah Ishak,
Siti Norazura Ahmad

**Abstract:**

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

**Keywords:**
Accuracy,
extended trapezoidal method,
numerical solution,
Volterra integro-differential equations.

##### 1777 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

**Authors:**
A. M. Sagir

**Abstract:**

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVPs) in ordinary differential equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

**Keywords:**
Block Method,
First Order Ordinary Differential Equations,
Hybrid,
Self starting.

##### 1776 Seven step Adams Type Block Method With Continuous Coefficient For Periodic Ordinary Differential Equation

**Authors:**
Olusheye Akinfenwa

**Abstract:**

**Keywords:**
Block Adam's type Method; Periodic Ordinary Differential
Equation; Stability.

##### 1775 Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation

**Authors:**
O. A. Akinfenwa,
N.M. Yao,
S. N. Jator

**Abstract:**

**Keywords:**
Collocation and Interpolation,
Continuous HybridBlock Formulae,
Off-Step Points,
Stability,
Stiff ODEs.

##### 1774 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations

**Authors:**
A. M. Sagir

**Abstract:**

This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y''' = f(x, y, y', y''), y(α)=y_{0}, y'(α)=β, y''(α)=η with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non – stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.

**Keywords:**
Block Method,
Hybrid,
Linear Multistep,
Self starting,
Third Order Ordinary Differential Equations.

##### 1773 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions

**Authors:**
Adil Al-Rammahi

**Abstract:**

Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.

**Keywords:**
Differential Equations,
Laplace Transformations.

##### 1772 Existence of Iterative Cauchy Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

**Keywords:**
Fractional calculus,
fractional differential equation,
Cauchy equation,
Riemann-Liouville fractional operators,
Volterra
integral equation,
non-expansive mapping,
iterative differential equation.

##### 1771 Solution of Density Dependent Nonlinear Reaction-Diffusion Equation Using Differential Quadrature Method

**Authors:**
Gülnihal Meral

**Abstract:**

**Keywords:**
Density Dependent Nonlinear Reaction-Diffusion Equation,
Differential Quadrature Method,
Implicit Euler Method.

##### 1770 Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation

**Authors:**
Anupma Bansal

**Abstract:**

We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.

**Keywords:**
Klein-Gordon-Schödinger Equation,
Lie Classical Method,
Exact Solutions

##### 1769 Parallel Block Backward Differentiation Formulas For Solving Large Systems of Ordinary Differential Equations

**Authors:**
Zarina Bibi,
I.,
Khairil Iskandar,
O.

**Abstract:**

**Keywords:**
Ordinary differential equations,
parallel.

##### 1768 Numerical Study of Some Coupled PDEs by using Differential Transformation Method

**Authors:**
Reza Abazari,
Rasool Abazari

**Abstract:**

In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.

**Keywords:**
Coupled Korteweg-de Vries(KdV) equation,
Coupled Burgers equation,
Coupled Schrödinger equation,
differential transformation method.

##### 1767 Lagrangian Method for Solving Unsteady Gas Equation

**Authors:**
Amir Taghavi,
kourosh Parand,
Hosein Fani

**Abstract:**

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

**Keywords:**
Unsteady gas equation,
Generalized Laguerre functions,
Lagrangian method,
Nonlinear ODE.

##### 1766 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

**Authors:**
N. M. Kamoh,
M. C. Soomiyol

**Abstract:**

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

**Keywords:**
Shifted Legendre polynomials,
third order block method,
discrete method,
convergent.

##### 1765 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

**Authors:**
Anjali Verma,
Ram Jiwari,
Jitender Kumar

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

**Keywords:**
Shallow water wave equation,
Exact solutions,
(G'/G) expansion method.

##### 1764 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations

**Authors:**
Davod Khojasteh Salkuyeh

**Abstract:**

An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.

**Keywords:**
Ordinary differential equations,
optimal stepsize,
error,
stochastic arithmetic,
CESTAC,
CADNA.

##### 1763 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem

**Authors:**
Mohd Agos Salim Nasir,
Ros Fadilah Deraman,
Siti Salmah Yasiran

**Abstract:**

**Keywords:**
Goursat problem,
partial differential equation,
Adomian decomposition method,
Boole's integration rule.

##### 1762 Using Hermite Function for Solving Thomas-Fermi Equation

**Authors:**
F. Bayatbabolghani,
K. Parand

**Abstract:**

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

**Keywords:**
Collocation method,
Hermite function,
Semi-infinite,
Thomas-Fermi equation.

##### 1761 Development Partitioning Intervalwise Block Method for Solving Ordinary Differential Equations

**Authors:**
K.H.Khairul Anuar,
K.I.Othman,
F.Ishak,
Z.B.Ibrahim,
Z.Majid

**Abstract:**

**Keywords:**
Adam Block Method,
BDF,
Ordinary Differential
Equations,
Partitioning Block Intervalwise

##### 1760 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability

**Authors:**
N. Kumaresan ,
J. Kavikumar,
Kuru Ratnavelu

**Abstract:**

**Keywords:**
Fuzzy differential equation,
Generalized differentiability,
H-difference and Simulink.

##### 1759 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

**Authors:**
Tarun Kumar Rawat,
Abhirup Lahiri,
Ashish Gupta

**Abstract:**

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

**Keywords:**
Single-ended input differential amplifier,
Noise,
stochastic differential equation,
mean and variance.

##### 1758 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method

**Authors:**
M. Saravi,
F. Ashrafi,
S.R. Mirrajei

**Abstract:**

**Keywords:**
Chebyshev polynomials,
Clenshaw method,
ODEs,
Spectral methods

##### 1757 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

**Authors:**
Süha Yılmaz,
Emin Özyılmaz,
Melih Turgut,
Şuur Nizamoğlu

**Abstract:**

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

**Keywords:**
Frenet Equations,
Partially Null Curves,
Minkowski Space-time,
Vector Differential Equation.

##### 1756 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay

**Authors:**
Cemil Tunc

**Abstract:**

In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.

**Keywords:**
Instability,
Lyapunov-Krasovskii functional,
delay differential equation,
fifth order.

##### 1755 Blow up in Polynomial Differential Equations

**Authors:**
Rudolf Csikja,
Janos Toth

**Abstract:**

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

**Keywords:**
blow up,
finite escape time,
polynomial ODE,
singularity,
Lotka–Volterra equation,
Painleve analysis,
Ψ-series,
global existence

##### 1754 On the Modeling and State Estimation for Dynamic Power System

**Authors:**
A. Thabet,
M. Boutayeb,
M. N. Abdelkrim

**Abstract:**

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

**Keywords:**
Power system,
Dynamic decoupled model,
Extended Kalman Filter,
Convergence analysis,
Time computing.