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Abstract—An investigation into Cahn-Hilliard equation was
carried out through numerical simulation to identify a possible phase
separation for one and two dimensional domains. It was observed that
this equation can reproduce important mass fluxes necessary for
phase separation within the miscibility gap and for coalescence of
particles.
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1. INTRODUCTION

HE Cahn-Hilliard equation was originally proposed in
1958 as a mathematical model to describe phase
separation in binary alloys [1]. This equation has been adopted
to model many other physical systems [2], [3]. In order to
solve it, many algorithms have been proposed using a variety
of discretization methods including finite element, finite
volume and finite difference [2], [4], [5].
Its dynamics can be roughly explained with phase diagrams
within the framework of classical thermodynamics [6]. An
example for spinodal decomposition is given in Fig. 1.
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Fig. 1 Phase diagram given in temperature versus composition with a
miscibility gap (adapted [6])

According to Fig. 1, compositions in the spinodal region
are unstable, because small fluctuations can produce phase
separation. On the other hand, compositions outside the
spinodal, but under the binodal curve, are metastable. In this
case, phase separation would also decrease the free energy of
the system, but it can only occur if nuclei of the phases form,
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since small fluctuations are not sufficiently to promote the
separation [6], [7].

This study aims to evaluate the response of the Cahn-
Hilliard equation in one and two dimensions, with or without
the energy gradient term, subjected to conditions in which the
composition is above the binodal curve, between the binodal
and spinodal curves or below the spinodal curve.

II. CAHEN-HILLIARD EQUATION

The Cahn-Hilliard differential equation can be written as
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where p is composition, f; is the free energy density, and K, is
the gradient energy coefficient.

It can be rewritten in two dimensions and Cartesian
coordinates as
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This equation was discretized using the finite volume
method with explicit formulation.
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III. NUMERICAL RESULTS

A. Evolution to Steady State - Adjustment of Phase Quantity
and Composition

This study was carried out to analyze how Cahn-Hilliard
equation predicts the time evolution of a one-dimensional
system in an initial condition as

p=05 —> 0<x<L
p=30 > al<x<bhlL

where L is the length of the domain, and a, b are variables that
are adjusted to give the average composition according to
Table 1.

TABLEI
COEFFICIENTS TO GIVE THE INITIAL COMPOSITION IN THE ONE DIMENSIONAL
SYSTEM
Average composition a b
0.9 0.42 0.58
1.1 0.38 0.62
1.5 0.30 0.70

325 1SN1:0000000091950263



Open Science Index, Materials and Metallurgical Engineering Vol:9, No:2, 2015 publications.waset.org/10000644. pdf

World Academy of Science, Engineering and Technology
International Journal of Materials and Metallurgical Engineering
Voal:9, No:2, 2015

In Fig. 2 the curves for the free energy density functions
and the average compositions are shown
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Fig. 2 Free energy density function and mean composition (p)
indicated

The average composition value of 0.9 is placed outside the
miscibility gap and its behavior, regardless of the presence or
not of the gradient energy term, corresponds to the
homogenization of the system composition. The evolution of
the profile with time can be seen and compared in Figs. 3 (a)
and (b).
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Fig. 3 Mean composition value p = 0.9 (a) without the gradient
energy term (b) with the gradient energy term
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When the average composition is 1.1 or 1.5, the presence of
the gradient energy term changes the final steady-state of the
system. Figs. 4 and 5 (a) represent a simple diffusion problem
and the result is the homogenization of the system at the
average value. In contrast, when the gradient energy term is
included there is phase separation and the composition is
adjusted to keep constant its average value Figs. 4 and 5 (b).
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Fig. 4 Mean composition value 1.1 (a) without the gradient energy
term, (b) with the gradient energy term.
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5 Mean composition value 1.5 (a) without the gradient energy
term, (b) with the gradient energy term
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Fig. 6 Initial profile for p=0.9
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Fig. 7 Initial profile for p = 1.1

B. Phase Separation

Phase separation was examined with Cahn-Hilliard
equation. The initial condition was a uniform composition
with the superposition of a 1% random fluctuation in
composition. Without the term derived from the gradient
energy, the fluctuation was eliminated by simple diffusion,
reaching a final state of uniform composition. In the presence
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of the term derived from gradient energy, the behavior of the
system depends on the average composition. For p = 0.9 there
is no phase separation, because it is outside the miscibility
gap. For p = 1.1, the composition is in the meta-stable region
(Fig. 1) and the 1% fluctuation was not sufficient to cause
phase separation. When p = 1.5, phase separation occurred,
because the composition is in the unstable region and the
initial small fluctuations were sufficient to trigger the
separation. Figs. 6-8 show these simulations.
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Fig. 8 Initial profile for p =1.5.

C. Coarsening Effect

Cahn-Hilliard equation was solved in a two dimensional
domain. An initial composition is given by

p=05 —> 0<x,y<L
p=30 > alL<x,y<bl

where L is the length of the domain, and a, b are adjusted to
give the average composition according to Table II.

TABLE II
DIMENSIONS FOR THE INITIAL DOMAIN ACCORDING TO THE MEAN
COMPOSITION FOR TWO DIMENSION ANALYSIS

Mean composition a b
0.9 0.30 0.70
1.1 0.255 0.745
1.5 0.18 0.82

A mesh of 80x80 nodes and the free energy density
functions presented in Fig. 2 were used. The composition p =
0.9, which is located outside the miscibility gap, leads to
simple homogenization of the composition by a diffusion
mechanism (Fig. 9). When the average composition is within
the miscibility gap (p= 1.1), the initial square profile becomes
a circle by a diffusion mechanism that causes mass transport
from the vertices to the edges, but a complete homogenization
does not occur, as seen in Fig. 10. The same behavior is
observed when p = 1.5 (Fig. 11), but the central square/circle
is larger. This phenomenon is similar to coarsening, which
occurs for precipitated particles in a matrix. In this case, mass
is transferred from regions of larger to smaller curvatures of
the interface between precipitate and matrix.
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Fig. 9 Mean composition 0.9

=05 =015
r=05s

1 23456012 34056

0,500 0875 1,250 1,625 2,000 2,375 2750

DHMWLMEDHNU&MEDI—'MW#MD&

Fig. 10 Mean composition 1.1
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Fig. 11 Mean composition 1.5

IV. CONCLUSION

An explicit finite volume method (FVM) solution for Cahn-
Hilliard equation was implemented for one and two
dimensional domains. In the one-dimensional problem, the
solution was consistent with the expected thermodynamic
behavior for the following simulated processes: (a)
homogenization of the system composition, when its average
value is placed outside the miscibility gap; (b) adjustment to
the amount of phases and composition when the average
composition is within the miscibility gap; (c) meta-stability of
one phase system, when the average composition is inside the
miscibility gap but outside the spinodal region; (d) instability
of a system of one phase when its average composition lies
within the spinodal composition for one and two-dimensional
problems.

The Cahn-Hilliard equation indicated a time evolution of
the system consistent with thermodynamics, promoting mass
fluxes from the regions with larger to smaller curvatures, i.e.
edges, transforming a square area into a circular one. This
mechanism is responsible for particle coalescence.
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