Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.
Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099515
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062References:
[1] Cahn, J. W., & Hilliard, J. E. (1958). Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 28(2), 258. doi:10.1063/1.1744102
[2] De Mello, E. V. L., &Filho, O. T. D. S. (2004). Numerical Study of the Cahn-Hilliard Equation in One, Two and Three Dimensions, 20. Statistical Mechanics; Superconductivity. doi:10.1016/j.physa.2004.08.076
[3] Bray, a. J. (1994). Theory of phase-ordering kinetics. Advances in Physics, 43(3), 357–459. doi:10.1080/00018739400101505
[4] Jing, X. N., Zhao, J. H., & He, L. H. (2003). 2D aggregate evolution in sintering due to multiple diffusion approaches. Materials Chemistry and Physics, 80(3), 595–598. doi:10.1016/S0254-0584(03)00102-0
[5] Cueto-Felgueroso, L., &Peraire, J. (2008). A time-adaptive finite volume method for the Cahn–Hilliard and Kuramoto–Sivashinsky equations. Journal of Computational Physics, 227(24), 9985–10017. doi:10.1016/j.jcp.2008.07.024
[6] Porter, D. A., &Easterling, K. E. (1992). Phase Transformation in metals and alloys. (C. & Hall, Ed.) (2nd ed., p. 440).
[7] Baghsheikhi, S. (2009). Spinodal decomposition in the binary Fe-Cr system. Royal Institute of Technology - Stockholm - Sweden.