Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On the Integer Solutions of the Pell Equation x2 - dy2 = 2t
Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim
Abstract:
Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.
Keywords: Pell equation, Diophantine equation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1328400
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404References:
[1] Arya S.P. On the Brahmagupta-Bhaskara Equation. Math. Ed. 8(1)(1991), 23-27.
[2] Baltus C. Continued Fractions and the Pell Equations:The work of Eulerand Lagrange. Comm. Anal. Theory Contin. Fractions 3(1994), 4-31.
[3] Barbeau E. Pell's Equation. Springer Verlag, 2003.
[4] Edwards, H.M. Fermat's Last Theorem. A Genetic Introduction to Alge-braic Number Theory. Corrected reprint of the 1977 original. GraduateTexts in Mathematics, 50. Springer-Verlag, New York, 1996.
[5] Kaplan P. and Williams K.S. Pell's Equations x2-my2 = -1,-4 and Continued Fractions. Journal of Number Theory 23(1986), 169-182.
[6] Koblitz N. A Course in Number Theory and Cryptography. Graduate Texts in Mathematics, Second Edition, Springer, 1994.
[7] Lenstra H.W. Solving The Pell Equation. Notices of the AMS 49(2)(2002), 182-192.
[8] Matthews, K. The Diophantine Equation x2-Dy2 = N, D > 0. Expo-sitiones Math.18 (2000), 323-331.
[9] Mollin R.A., Poorten A.J. and Williams H.C. Halfway to a Solution ofx2 - Dy2 = ?3. Journal de Theorie des Nombres Bordeaux, 6(1994),421-457.
[10] Niven I., Zuckerman H.S. and Montgomery H.L. An Introduction to the Theory of Numbers. Fifth Edition, John Wiley&Sons, Inc., New York,1991.
[11] Stevenhagen P. A Density Conjecture for the Negative Pell Equation.Computational Algebra and Number Theory, Math. Appl. 325 (1992),187-200.
[12] Tekcan A. Pell Equation x2 - Dy2 = 2, II. Bulletin of the Irish Mathematical Society 54 (2004), 73?89.
[13] Tekcan A., Bizim O. and Bayraktar M. Solving the Pell Equation Using the Fundamental Element of the Field Q(ÔêÜΔ). South East Asian Bull.of Maths. 30(2006), 355-366.
[14] Tekcan A. The Pell Equation x2 -Dy2 = ┬▒4. Appl. Math. Sci., 1(8)(2007), 363-369.