Search results for: Stem cell SOM;
887 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process
Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis
Abstract:
This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.Keywords: Aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872886 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy
Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip
Abstract:
Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.
Keywords: Radiation, tumour repopulation, squamous cell carcinoma, stem cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969885 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model
Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman
Abstract:
The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508884 Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource
Authors: Nurhayati Abdullah, Fauziah Sulaiman, Muhamad Azman Miskam, Rahmad Mohd Taib
Abstract:
Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, biooil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudostem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.
Keywords: Banana Waste, Biomass, Renewable Energy, Thermo-chemical Characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8753883 On-line Image Mosaicing of Live Stem Cells
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
Image mosaicing is a technique that permits to enlarge the field of view of a camera. For instance, it is employed to achieve panoramas with common cameras or even in scientific applications, to achieve the image of a whole culture in microscopical imaging. Usually, a mosaic of cell cultures is achieved through using automated microscopes. However, this is often performed in batch, through CPU intensive minimization algorithms. In addition, live stem cells are studied in phase contrast, showing a low contrast that cannot be improved further. We present a method to study the flat field from live stem cells images even in case of 100% confluence, this permitting to build accurate mosaics on-line using high performance algorithms.
Keywords: Microscopy, image mosaicing, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509882 Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering
Authors: Lu-Chen Yeh‚ Jui-Ming Yeh
Abstract:
In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers was characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multipotentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.
Keywords: Electrospun, polyaniline, neural stem cell, differentiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786881 Safety Study of Intravenously Administered Human Cord Blood Stem Cells in the Treatment of Symptoms Related to Chronic Inflammation
Authors: Brian M. Mehling, Louis Quartararo, Marine Manvelyan, Paul Wang, Dong-Cheng Wu
Abstract:
Numerous investigations suggest that Mesenchymal Stem Cells (MSCs) in general represent a valuable tool for therapy of symptoms related to chronic inflammatory diseases. Blue Horizon Stem Cell Therapy Program is a leading provider of adult and children’s stem cell therapies. Uniquely we have safely and efficiently treated more than 600 patients with documenting each procedure. The purpose of our study is primarily to monitor the immune response in order to validate the safety of intravenous infusion of human umbilical cord blood derived MSCs (UC-MSCs), and secondly, to evaluate effects on biomarkers associated with chronic inflammation. Nine patients were treated for conditions associated with chronic inflammation and for the purpose of antiaging. They have been given one intravenous infusion of UCMSCs. Our study of blood test markers of 9 patients with chronic inflammation before and within three months after MSCs treatment demonstrates that there is no significant changes and MSCs treatment was safe for the patients. Analysis of different indicators of chronic inflammation and aging included in initial, 24-hours, two weeks and three months protocols showed that stem cell treatment was safe for the patients; there were no adverse reactions. Moreover data from follow up protocols demonstrates significant improvement in energy level, hair, nails growth and skin conditions. Intravenously administered UC-MSCs were safe and effective in the improvement of symptoms related to chronic inflammation. Further close monitoring and inclusion of more patients are necessary to fully characterize the advantages of UC-MSCs application in treatment of symptoms related to chronic inflammation.Keywords: Chronic inflammatory diseases, intravenous infusion, mesenchymal stem cells (MSCs), umbilical cord blood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932880 Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells
Authors: Ali A. Alshatwi, Vaiyapuri S. Periasamy, Jegan Athinarayanan
Abstract:
Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.
Keywords: Cobalt oxide, Human mesenchymal stem cells, MgO, Silver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408879 Preliminary Study on Determining Stem Diameter Variations of Sympodial Orchid
Authors: N.M Khairi, M.I. Naimah, M.S.B. Shah Rizam, M.T. Nooritawati, Z.A. Husna
Abstract:
Changes in stem diameter of orchid plants were investigated in a control growing climate. Previous studies have focused on stem diameter in relation to plant water on terrestrial plants in order to schedule the irrigation. The objective of this work was to evaluate the ability of the strain gauges to capture changes in the epiphytes plant stem. Experiments were carried out by using the sympodial orchid, Dendrobium Sonia in a stressed condition. From the findings, the sensor can detect changes in the plant stem and the result can easily be used as a reference for further studies for the development of a proper watering system.Keywords: Strain gauge, stem diameter, Dendrobium Sonia, epiphyte, terrestrial
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410878 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection
Authors: Ethan Shafer, Timothy Graziano, Jay Fisher
Abstract:
This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.
Keywords: STEM major, STEM, pedagogy, digital literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211877 Evolutionary of Prostate Cancer Stem Cells in Prostate Duct
Authors: Zachariah Sinkala
Abstract:
A systems approach model for prostate cancer in prostate duct, as a sub-system of the organism is developed. It is accomplished in two steps. First this research work starts with a nonlinear system of coupled Fokker-Plank equations which models continuous process of the system like motion of cells. Then extended to PDEs that include discontinuous processes like cell mutations, proliferation and deaths. The discontinuous processes is modeled by using intensity poisson processes. The model incorporates the features of the prostate duct. The system of PDEs spatial coordinate is along the proximal distal axis. Its parameters depend on features of the prostate duct. The movement of cells is biased towards distal region and mutations of prostate cancer cells is localized in the proximal region. Numerical solutions of the full system of equations are provided, and are exhibit traveling wave fronts phenomena. This motivates the use of the standard transformation to derive a canonically related system of ODEs for traveling wave solutions. The results obtained show persistence of prostate cancer by showing that the non-negative cone for the traveling wave system is time invariant. The traveling waves have a unique global attractor is proved also. Biologically, the global attractor verifies that evolution of prostate cancer stem cells exhibit the avascular tumor growth. These numerical solutions show that altering prostate stem cell movement or mutation of prostate cancer cells lead to avascular tumor. Conclusion with comments on clinical implications of the model is discussed.
Keywords: Fokker-Plank equations, global attractor, stem cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903876 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells
Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari
Abstract:
Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.
Keywords: Ultrasound, mechanical index, modeling, stem cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961875 Enhanced Differentiation of Stromal Cells and Embryonic Stem Cells with Vitamin D3
Authors: Mayada Alqaisi, Nasser Al-Shanti, Quiyu Wang, William S. Gilmore
Abstract:
In-vitro mouse co-culture of E14 embryonic stem cells (ESCs) and OP9 stromal cells can recapitulate the earliest stages of haematopoietic development, not accessible in human embryos, supporting both haemogenic precursors and their primitive haematopoietic progeny. 1α, 25-Dihydroxy-vitamin D3 (VD3) has been demonstrated to be a powerful differentiation inducer for a wide variety of neoplastic cells, and could enhance early differentiation of ESCs into blood cells in E14/OP9 co-culture. This study aims to ascertain whether VD3 is key in promoting differentiation and suppressing proliferation, by separately investigating the effects of VD3 on the proliferation phase of the E14 cell line and on stromal OP9 cells.The results showed that VD3 inhibited the proliferation of the cells in a dose-dependent manner, quantitatively by decreased cell number, and qualitatively by alkaline-phosphatase staining that revealed significant differences between VD3-treated and untreated cells, characterised by decreased enzyme expression (colourless cells). Propidium-iodide cell-cycle analyses showed no significant percentage change in VD3-treated E14 and OP9 cells within their G and S-phases, compared to the untreated controls, despite the increased percentage of G-phase compared to the S-phase in a dosedependent manner. These results with E14 and OP9 cells indicate that adequate VD3 concentration enhances cellular differentiation and inhibits proliferation. The results also suggest that if E14 and OP9 cells were co-cultured andVD3-treated, there would be furtherenhanced differentiation of ESCs into blood cells.
Keywords: Differentiation, embryonic stem cells, OP9 stromal cells, 1α, 25-dihydroxy-vitamin D3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877874 Immunolabeling of TGF-β during Muscle Regeneration
Authors: K. Nikovics, D. Riccobono, M. Oger, H. Morin, L. Barbier, T. Poyot, X. Holy, A. Bendahmane, M. Drouet, A. L. Favier
Abstract:
Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.
Keywords: Adipose tissue derived stromal/stem cell, cytokine, macrophage, muscle regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892873 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation
Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha
Abstract:
Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.Keywords: Mesenchymal stem cells, Cryopreservation, Stemness, Senescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105872 Multichannel Image Mosaicing of Stem Cells
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
Image mosaicing techniques are usually employed to offer researchers a wider field of view of microscopic image of biological samples. a mosaic is commonly achieved using automated microscopes and often with one “color" channel, whether it refers to natural or fluorescent analysis. In this work we present a method to achieve three subsequent mosaics of the same part of a stem cell culture analyzed in phase contrast and in fluorescence, with a common non-automated inverted microscope. The mosaics obtained are then merged together to mark, in the original contrast phase images, nuclei and cytoplasm of the cells referring to a mosaic of the culture, rather than to single images. The experiments carried out prove the effectiveness of our approach with cultures of cells stained with calcein (green/cytoplasm and nuclei) and hoechst (blue/nuclei) probes.
Keywords: Microscopy, image mosaicing, fluorescence, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487871 Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment
Authors: Pilanee Vaithanomsat, Waraporn Apiwatanapiwat
Abstract:
Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid.Keywords: Vanillin, production, Jatropha curcas stem, steam explosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383870 Evaluation of Heavy Metal Concentrations of Stem and Seed of Juncus acutus for Grazing Animals and Birds in Kızılırmak Delta
Authors: N. Cetinkaya, F. Erdem
Abstract:
Juncus acutus (Juncaceae) is a perennial wetland plant and it is commonly known as spiny rush or sharp rush. It is the most abundant plant in Kizilirmak grassland, Samsun, Turkey. Heavy metals are significant environmental contaminants in delta and their toxicity is an increasing problem for animals whose natural habitat is delta. The objective of this study was to evaluate heavy metal concentrations mainly As, Cd, Sb, Ba, Pb and Hg in stem and seed of Juncus acutus for grazing animals and birds in delta. The Juncus acutus stem and seed samples were collected from Kizilirmak Delta in July, August and September. Heavy metal concentrations of collected samples were analyzed by Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). The obtained mean values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus were 0.11 and 0.23 mg/kg; 0.07 and 0.11 mg/kg; 0.02 and 0.02 mg/kg; 5.26 and 1.75 mg/kg; 0.05 and not detectable in July respectively. Hg was not detected in both stem and seed of Juncus acutus, Pb concentration was determined only in stem of Juncus acutus but not in seed. There were no significant differences between the values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus. The obtained As, Cd, Sb, Ba, Pb and Hg results of stem and seed of Juncus acutus show that seed and stem of Juncus acutus may be safely consumed for grazing animals and birds regarding to heavy metals contamination in Kizilirmak Delta.
Keywords: Heavy metals, Juncus acutus, Kizilirmak Delta, wetland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721869 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization
Authors: Roman Major, Klaudia Trembecka-Wojciga, Juergen Markus Lackner, Boguslaw Major
Abstract:
The future and the development of science is therefore seen in interdisciplinary areas such as biomedical engineering. Selfassembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as microstructure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.Keywords: Bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837868 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education
Authors: Raluca Ionela Maxim
Abstract:
Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.
Keywords: Design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376867 Multifunctional Cell Processing with Plasmonic Nanobubbles
Authors: Ekaterina Y. Lukianova-Hleb, Dmitri O. Lapotko
Abstract:
Cell processing techniques for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in heterogeneous cell systems. Using our novel on-demand nonstationary intracellular events instead of permanent materials, plasmonic nanobubbles, generated with a short laser pulse only in target cells, we achieved simultaneous multifunctional cell-specific processing with the rate up to 50 million cells per minute.
Keywords: Delivery, cell separation, graft, laser, plasmonic nanobubble, cell therapy, gold nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726866 A Novel Nano-Scaled SRAM Cell
Authors: Arash Azizi Mazreah, Mohammad Reza Sahebi, Mohammad T. Manzuri Shalmani
Abstract:
To help overcome limits to the density of conventional SRAMs and leakage current of SRAM cell in nanoscaled CMOS technology, we have developed a four-transistor SRAM cell. The newly developed CMOS four-transistor SRAM cell uses one word-line and one bit-line during read/write operation. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 19% smaller than a conventional six-transistor cell using same design rules. Also the leakage current of new cell is 60% smaller than a conventional sixtransistor SRAM cell. Simulation result in 65nm CMOS technology shows new cell has correct operation during read/write operation and idle mode.
Keywords: SRAM Cell, leakage current, cell area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768865 Potential Effects of Human Bone Marrow Non- Mesenchymal Mononuclear Cells on Neuronal Differentiation
Authors: Chareerut Phruksaniyom, Khwanthana Grataitong, Permphan Dharmasaroja, Surapol Issaragrisil
Abstract:
Bone marrow-derived stem cells have been widely studied as an alternative source of stem cells. Mesenchymal stem cells (MSCs) were mostly investigated and studies showed MSCs can promote neurogenesis. Little is known about the non-mesenchymal mononuclear cell fraction, which contains both hematopoietic and nonhematopoietic cells, including monocytes and endothelial progenitor cells. This study focused on unfractionated bone marrow mononuclear cells (BMMCs), which remained 72 h after MSCs were adhered to the culture plates. We showed that BMMC-conditioned medium promoted morphological changes of human SH-SY5Y neuroblastoma cells from an epithelial-like phenotype towards a neuron-like phenotype as indicated by an increase in neurite outgrowth, like those observed in retinoic acid (RA)-treated cells. The result could be explained by the effects of trophic factors released from BMMCs, as shown in the RT-PCR results that BMMCs expressed nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Similar results on the cell proliferation rate were also observed between RA-treated cells and cells cultured in BMMC-conditioned medium, suggesting that cells creased proliferating and differentiated into a neuronal phenotype. Using real-time RT-PCR, a significantly increased expression of tyrosine hydroxylase (TH) mRNA in SHSY5Y cells indicated that BMMC-conditioned medium induced catecholaminergic identities in differentiated SH-SY5Y cells.Keywords: bone marrow, neuronal differentiation, neurite outgrowth, trophic factor, tyrosine hydroxylase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573864 Assembly Process Algorithms of Flexible Cell
Authors: M. Kusá, M. Matúšová, A. Javorová, K. Velí
Abstract:
This paper deals about four items assembly process of linear drive. This assembly will be realized in flexible assembly cell on Institute of Manufacturing Systems and Applied Mechanics. There is defined manufacturing cell, individual actuators created our flexible cell. Next chapter is about control type, detailed describe a sequence control type, which will be used in mentioned flexible assembly cell. All cell control is divided in individual steps instructions. There instructions illustrate table number III.Keywords: assembly, flexible cell, sequence control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309863 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering
Authors: S. S. Salehi, A. Shamloo
Abstract:
Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.Keywords: Cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292862 Determination of Agricultural Characteristics of Smooth Bromegrass (Bromus inermis Leyss) Lines under Konya Regional Conditions
Authors: Abdullah Özköse, Ahmet Tamkoç
Abstract:
The present study was conducted to determine the yield and yield components of smooth bromegrass lines under the environmental conditions of the Konya region during the growing seasons between 2011 and 2013. The experiment was performed in the randomized complete block design (RCBD) with four replications. It was found that the selected lines had a statistically significant effect on all the investigated traits, except for the main stem length and the number of nodes in the main stem. According to the two-year average calculated for various parameters checked in the smooth bromegrass lines, the main stem length ranged from 71.6 cm to 79.1 cm, the main stem diameter from 2.12 mm from 2.70 mm, the number of nodes in the main stem from 3.2 to 3.7, the internode length from 11.6 cm to 18.9 cm, flag leaf length from 9.7 cm to 12.7 cm, flag leaf width from 3.58 cm to 6.04 mm, herbage yield from 221.3 kg da–1 to 354.7 kg da–1 and hay yield from 100.4 kg da–1 to 190.1 kg da–1. The study concluded that the smooth bromegrass lines differ in terms of yield and yield components. Therefore, it is very crucial to select suitable varieties of smooth bromegrass to obtain optimum yield.
Keywords: Semiarid region, smooth bromegrass, yield, yield components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227861 Human Elastin-derived Biomimetic Coating Surface to Support Cell Growth
Authors: Antonella Bandiera
Abstract:
A new sythetic gene coding for a Human Elastin-Like Polypeptide was constructed and expressed. The recombinant product was tested as coating agent to realize a surface suitable for cell growth. Coatings showed peculiar features and different human cell lines were seeded and cultured. All cell lines tested showed to adhere and proliferate on this substrate that has been shown also to exert a specific effect on cells, depending on cell type.Keywords: elastin, recombinant protein, coating, cell adhesion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829860 Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth
Authors: A. Maria G. Melero, A. M. Senna, J. A. Domingues, M. A. Hausen, E. Aparecida R. Duek, V. R. Botaro
Abstract:
A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.
Keywords: Cellulose acetate, hydrogel, biomaterial, cellular growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163859 The Role and Importance of Genome Sequencing in Prediction of Cancer Risk
Authors: M. Sadeghi, H. Pezeshk, R. Tusserkani, A. Sharifi Zarchi, A. Malekpour, M. Foroughmand, S. Goliaei, M. Totonchi, N. Ansari–Pour
Abstract:
The role and relative importance of intrinsic and extrinsic factors in the development of complex diseases such as cancer still remains a controversial issue. Determining the amount of variation explained by these factors needs experimental data and statistical models. These models are nevertheless based on the occurrence and accumulation of random mutational events during stem cell division, thus rendering cancer development a stochastic outcome. We demonstrate that not only individual genome sequencing is uninformative in determining cancer risk, but also assigning a unique genome sequence to any given individual (healthy or affected) is not meaningful. Current whole-genome sequencing approaches are therefore unlikely to realize the promise of personalized medicine. In conclusion, since genome sequence differs from cell to cell and changes over time, it seems that determining the risk factor of complex diseases based on genome sequence is somewhat unrealistic, and therefore, the resulting data are likely to be inherently uninformative.
Keywords: Cancer risk, extrinsic factors, genome sequencing, intrinsic factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117858 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students
Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee
Abstract:
Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.
Keywords: Hands-on activity, STEM education, computer programming, metal work.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972