WASET
	%0 Journal Article
	%A Chareerut Phruksaniyom and  Khwanthana Grataitong and  Permphan Dharmasaroja and  Surapol Issaragrisil
	%D 2011
	%J International Journal of Medical and Health Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 60, 2011
	%T Potential Effects of Human Bone Marrow Non- Mesenchymal Mononuclear Cells on Neuronal Differentiation
	%U https://publications.waset.org/pdf/6373
	%V 60
	%X Bone marrow-derived stem cells have been widely
studied as an alternative source of stem cells. Mesenchymal stem
cells (MSCs) were mostly investigated and studies showed MSCs can
promote neurogenesis. Little is known about the non-mesenchymal
mononuclear cell fraction, which contains both hematopoietic and
nonhematopoietic cells, including monocytes and endothelial
progenitor cells. This study focused on unfractionated bone marrow
mononuclear cells (BMMCs), which remained 72 h after MSCs were
adhered to the culture plates. We showed that BMMC-conditioned
medium promoted morphological changes of human SH-SY5Y
neuroblastoma cells from an epithelial-like phenotype towards a
neuron-like phenotype as indicated by an increase in neurite
outgrowth, like those observed in retinoic acid (RA)-treated cells.
The result could be explained by the effects of trophic factors
released from BMMCs, as shown in the RT-PCR results that
BMMCs expressed nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF).
Similar results on the cell proliferation rate were also observed
between RA-treated cells and cells cultured in BMMC-conditioned
medium, suggesting that cells creased proliferating and differentiated
into a neuronal phenotype. Using real-time RT-PCR, a significantly
increased expression of tyrosine hydroxylase (TH) mRNA in SHSY5Y
cells indicated that BMMC-conditioned medium induced
catecholaminergic identities in differentiated SH-SY5Y cells.
	%P 652 - 656