Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31105
Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment

Authors: Pilanee Vaithanomsat, Waraporn Apiwatanapiwat


Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid.

Keywords: Production, vanillin, Jatropha curcas stem, steam explosion

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935


[1] H. Priefert, J. Rabenhorst and A. Steinbuchel. 2001. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56: 296-314.
[2] Li, T. And J.P.N. Rosazza. 2000. Biocatalytic synthesis of vanillin. Appl. Environ. Microbiol. 66: 684-687.
[3] Stentelaire, C., L. Lesage-Meessen, J. Oddou, O. Bernard, G. Bastin, B.C. Ceccaldi and M. Asther. 2000. Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus. J. Biosci. Bioeng. 89: 223-230.
[4] Muheim, A. and K. Lerch. 1999. Towards a high-yield bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 51: 456-461.
[5] Lesage-Meessen, L., C. Stentelaire, A. Lomascolo , D. Couteau, M. Asther, S. Moukha, E. Record, J.C. Sigoillot and M. Asther. 1999. Fungal transfor mation of ferulic acid from sugar beet pulp to natural vanillin. J. Sci. Food. Agric. 79: 487-490.
[6] Zheng, L., P. Zheng, Z. Sun, Y. Bai, J. Wang and X. Guo. 2007. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and pycnoporus cinnabarinus. Bioresource Technology. 98:1115- 1119.
[7] Falconnier, B., C. Lapierre, L. Lesage-Meessen, G. Yonnet, P. Brunerie, B. Colonna Ceccaldi, G. Corrieu and M. Asther. 1994. Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pynnoporus cinnabarinus I-937: Identification of metabolic pathways. J. Biotechnol. 37:123-132.
[8] Lesage-Meessen, L., M. Delattre, M. Haon, J.F. Thibault, B.C. Ceccaldi, P. Bruneric and M. Asther. 1996. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 50: 107-113.
[9] Bonnin, E., H. Grange, L. Lesage-Meessen, M. Asther and J.F. Thibault. 2000. Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydrate Polymers. 41:143-151.
[10] Bonnin, E., M. Brunel, Y. Gouy, L. Lesage-Meessen, M. Asther and J.F. Thibault. 2001. Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL 39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. Enzyme. Microb. Technol. 28: 70-80.
[11] Klinke, H.B., B.K. Ahring, A.S. Schmidt and A.B. Thomsen. 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol. 82: 15-26.
[12] Topakas, E., E. Kalogeris, D. Kekos, B.J. Macris and P. Christakopoulos. 2003. Bioconversion of ferulic acid into vanillic acic by the thermophillic fungus Sporotrichum thermophile. Lebensm.-Wiss. u.-Technol. 36:561-565.
[13] Brunati, M., F. Marinelli, C. Bertolini, R. Gandolfi, D. Daffonchio and F. Molinari. 2004. Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme. Microb. Technol. 34: 3-9.
[14] Zheng, L., P. Zheng, Z. Sun, Y. Bai, J. Wang and X. Guo. 2007. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and pycnoporus cinnabarinus. Bioresource Technology. 98:1115- 1119.
[15] Chornet, E. and R.P. Overend. 1988. Phenomenological Kinetics and Reaction Engineering Aspects of Steam/Aqueous Treatments. Proceedings of the International Workshop on Steam Explosion Techniques. Fundamentals and Industrial Applications. 21-58.
[16] Tappi Test Method, Tappi Press, Georgia, 1996.
[17] Pumipat, P., Chuntranuluck, S., Kitpreechavanic, V., Punsuvon, V. and Vaithanomsat, P. (2008) Production process of hydrolysate from steam explosion of oil palm trunk for xylitol fermentation. Kasetsart Journal (Natural Science) 42(1): 73-78.
[18] Thibault, J.-F., Asther, M., Ceccaldi, B.C., Couteau, D., Delattre, M., Duarte, J.C., Faulds, C., Heldt-Hansen, H.-P., Kroon, P., Lesage- Meessen, L., Micard, V., Renard, C.M.G.C., Tuohy, M., Van Hulle, S. and Williamson, G. (1998) Fungal bioconversion of agricultural byproducts to vanillin. Lebensm.-Wiss. U.-Technol. 31: 530-536.