Search results for: Installation
188 Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument
Authors: Danni Cong, Meiping Wu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokuncai, Hao Qin
Abstract:
Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design.Keywords: Gravity gradient sensor, radial installation limit error, accelerometer, uniaxial rotational modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931187 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modeling in Frustum Confining Vessel
Authors: Seyed Abolhasan Naeini, M. Mortezaee
Abstract:
Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vessel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firuzkuh, Iran. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.
Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502186 Floating Offshore Wind: A Review of Installation Vessel Requirements
Authors: A. P. Crowle
Abstract:
Floating offshore wind farms may provide in the future large quantities of renewable energy. One of the challenges to their future development is the provision of installation vessels for the offshore installation of floating wind turbines. This paper examines the current fleet of vessels that can be used for inshore construction. Separate vessels are required for the ocean tow out and the offshore installation. Information will be provided on what new vessels might be required to improve the efficiency and reduce costs of installing floating wind turbines. Specialized cargo vessels are required for this initial mobilization. Anchor handling vessels are required to tow the floating wind turbine offshore and to install and connect the moorings. Subsea work vessels are required to install the dynamic cables whilst cable lay vessels are required for the export power cable. This paper reviews the existing and future installation vessel requirement for floating wind. Dedicated ports are required for vertical integration of the substructure and the tower, nacelle and blades.
Keywords: Floating wind, naval architecture, offshore installation vessels, ports for renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146185 An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention
Authors: Tae-Heon Moon, Sun-Young Heo, Sang-Ho Lee, Youn-Taik Leem, Kwang-Woo Nam
Abstract:
This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analysis and weighted displacement quotient (WDQ). As study methods, it analyzed existing relevant studies for identifying the trends of CCTV and crime studies based on big data from 1800 to 2014 and understanding the relation between CCTV and crime. Second, it investigated the current situation of nationwide CCTVs and analyzed the guidelines of CCTV installation and operation to draw attention to the problems and indicating points of CCTV use. Third, it investigated the crime occurrence in case areas and the current situation of CCTV installation in the spatial aspects, and analyzed the appropriateness and effectiveness of CCTV installation to suggest a rational installation of CCTV and the strategic direction of crime prevention. The results demonstrate that there was no significant effect in the installation of CCTV on crime prevention in the case area. This indicates that CCTV should be installed and managed in a more scientific way reflecting local crime situations. In terms of CCTV, the methods of spatial analysis such as GIS, which can evaluate the installation effect, and the methods of economic analysis like cost-benefit analysis should be developed. In addition, these methods should be distributed to local governments across the nation for the appropriate installation of CCTV and operation. This study intended to find a design guideline of the optimum CCTV installation. In this regard, this study is meaningful in that it will contribute to the creation of a safe city.
Keywords: CCTV, Safe City, Crime Prevention, Spatial Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682184 An Analysis of the Optimization Condition of Plasma Generator for Air Conditioner System
Authors: Arunrungrusmi S, Chaokamnerd W , Tanitteerapan T , Mungkung N., Yuji T.
Abstract:
This research aimed to develop plasma system used in air conditioners. This developed plasma system could be installed in the air conditioners - all split type. The quality of air could be improved to be equal to present plasma system. Development processes were as follows: 1) to study the plasma system used in the air conditioners, 2) to design a plasma generator, 3) to develop the plasma generator, and 4) to test its performance in many types of the air conditioners. This plasma system was developed by AC high voltage – 14 kv with a frequency of 50 kHz. Carbon was a conductor to generate arc in air purifier system. The research was tested by installing the plasma generator in the air conditioners - wall type. Whereas, there were 3 types of installations: air flow out, air flow in, and room center. The result of the plasma generator installed in the air conditioners, split type, revealed that the air flow out installation provided the highest average of o-zone at 223 mg/h. This type of installation provided the highest efficiency of air quality improvement. Moreover, the air flow in installation and the room center installation provided the average of the o-zone at 163 mg/h and 64 mg/h, respectively.
Keywords: Air Conditioner, Plasma generator, High voltage, Optimization, Installation position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360183 Installation Stability of Low Temperature Steel Mesh in LNG Storage
Authors: Rui Yu, Huiqing Ying
Abstract:
To enhance installation security, a LNG storage in Rudong of Jiangsu province was adopted as a practical work, and it was analyzed by nonlinear finite element method to research overall and local stability performance, as well as the stress and deformation under the action of wind load and self-weight. Results indicate that deformation is tiny when steel mesh maintains as an overall ring, and stress caused by vertical bending moment and tension of bottom tie wire are also in the safe range. However, axial forces of lap reinforcement in adjacent steel mesh exceed the ultimate bearing capacity of tie wire. Hence, tie wires are ruptured; single mesh loses lateral connection and turns into monolithic status as the destruction of overall structure. Further more, monolithic steel mesh is led to collapse by the damage of bottom connection. So, in order to prevent connection failure and enhance installation security, the overlapping parts of steel mesh should be taken more reliable measures.
Keywords: low temperature steel mesh, installation stability, nonlinear finite element, tie wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767182 Analysis of Electrical Installation of a Photovoltaic Power Park in Greece
Authors: D. E. Gourgoulis, C. G. Yakinthos, M. G. Vassiliadou
Abstract:
The scope of this paper is to describe a real electrical installation of renewable energy using photovoltaic cells. The displayed power grid connected network was established in 2007 at area of Northern Greece. The photovoltaic park is composed of 6120 photovoltaic cells able to deliver a total power of 1.101.600 Wp. For the transformation of DC voltage to AC voltage have been used 25 stand alone three phases inverters and for the connection at the medium voltage network of Greek Power Authority have been installed two oil immersed transformer of 630 kVA each one. Due to the wide space area of installation a specific external lightning protection system has been designed. Additionally, due to the sensitive electronics of the control and protection systems of park, surge protection, equipotent bonding and shielding were also of major importance.Keywords: Inverter, Photovoltaic cells, Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565181 Investigation on the HRSG Installation at South Pars Gas Complex Phases 2&3
Authors: R. Moradifar, M. Masahebfard, M. Zahir
Abstract:
In this article the investigation about installation heat recovery steam generation (HRSG) on the exhaust of turbo generators of phases 2&3 at South Pars Gas Complex is presented. The temperature of exhaust gas is approximately 665 degree centigrade, Installation of heat recovery boiler was simulated in ThermoFlow 17.0.2 software, based on test operation data and the equipments site operation conditions in Pars exclusive economical energy area, the affect of installation HRSG package on the available gas turbine and its operation parameters, ambient temperature, the exhaust temperatures steam flow rate were investigated. Base on the results recommended HRSG package should have the capacity for 98 ton per hour high pressure steam generation this refinery, by use of exhaust of three gas turbines for each package in operation condition of each refinery at 30 degree centigrade. Besides saving energy this project will be an Environment-Friendly project. The Payback Period is estimated approximately 1.8 year, with considering Clean Development Mechanism.Keywords: HRSG, South pars Gas complex, ThermoFlow 17.0.2 software, energy, turbo generators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347180 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.
Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69179 Limit State of Trapezoidal Metal Sheets Exposed to Concentrated Load
Authors: Kateřina Jurdová
Abstract:
In most industrial compounds are used trapezoidal metal sheets like a roof decks. These trapezoidal metal sheets are exposed by concentrated loads, usually by service loads arise from installation of air distribution, sanitary distribution, sprinkler system or wiring installation. In objects of public facilities (like shopping centre, tennis hall, etc.) they can be used for hanging advertising posters etc, too. These systems work as “building kit”. These anchoring systems are represented by clamps in shape of “V”.
This paper is occupy with recapitulation of installation systems available in trade with focus on load-bearing capacity specified by producer and on possible methods, how exactly define load bearing capacity of trapezoidal sheet loaded by concentrated load. The load bearing capacity was verified at experimental samples to determine real behavior of trapezoidal metal sheets exposed to concentrated loads.
Keywords: Clamps, concentrated load, loading test, trapezoidal metal sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716178 Digital Homeostasis: Tangible Computing as a Multi-Sensory Installation
Authors: Andrea Macruz
Abstract:
This paper explores computation as a process for design by examining how computers can become more than an operative strategy in a designer's toolkit. It documents this, building upon concepts of neuroscience and Antonio Damasio's Homeostasis Theory, which is the control of bodily states through feedback intended to keep conditions favorable for life. To do this, it follows a methodology through algorithmic drawing and discusses the outcomes of three multi-sensory design installations, which culminated from a course in an academic setting. It explains both the studio process that took place to create the installations and the computational process that was developed, related to the fields of algorithmic design and tangible computing. It discusses how designers can use computational range to achieve homeostasis related to sensory data in a multi-sensory installation. The outcomes show clearly how people and computers interact with different sensory modalities and affordances. They propose using computers as meta-physical stabilizers rather than tools.
Keywords: Antonio Damasio, emotional feedback, algorithmic drawing, homeostasis, multi-sensory installation, neuroscience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366177 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia
Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad
Abstract:
A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.
Keywords: Actiflo® clarifier, membrane, mining wastewater, reverse osmosis, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200176 Solar Panel Installations on Existing Structures
Authors: Tim D. Sass, Pe, Leed
Abstract:
The rising price of fossil fuels, government incentives and growing public aware-ness for the need to implement sustainable energy supplies has resulted in a large in-crease in solar panel installations across the country. For many sites the most eco-nomical solar panel installation uses existing, southerly facing rooftops. Adding solar panels to an existing roof typically means increased loads that must be borne by the building-s structural elements. The structural design professional is responsible for ensuring a new solar panel installation is properly supported by an existing structure and configured to maximize energy generation.Keywords: Solar Panel, Structures, Structural Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8089175 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet
Authors: Kateřina Jurdová
Abstract:
Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.
Keywords: Decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649174 Evaluation of Energy Upgrade Measures and Connection of Renewable Energy Sources Using Software Tools: Case Study of an Academic Library Building in Larissa, Greece
Authors: Giwrgos S. Gkarmpounis, Aikaterini G. Rokkou, Marios N. Moschakis
Abstract:
Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.
Keywords: Energy saving measures, homer software, renewable energy sources, RETScreen software, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992173 Early Installation Effect on the Vibration Generated by Machines
Authors: Maitham Al-Safwani
Abstract:
Motor vibration issues were analyzed and correlated to poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plate that drastically reduced the vibration. In this study, vibration data were recorded for several and similar motors run at the same and different speeds. The vibration values were recorded — for two and a half hours — and the vibration readings analyzed to determine when the readings become consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.
Keywords: Vibration, noise, shaft unbalance, shaft misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435172 Effective Security Method for Wireless LAN using Life-Cycle of Wireless Access Point
Authors: Soon-Tai Park, Haeryong Park, Myoung-sun Noh, Yoo-Jae Won
Abstract:
There are many expand of Wi-Fi zones provided mobile careers and usage of wireless access point at home as increase of usage of wireless internet caused by the use of smart phone. This paper shows wireless local area network status, security threats of WLAN and functionality of major wireless access point in Korea. We propose security countermeasures concerned with life cycle of access point from manufacturing to installation, using and finally disposal. There needed to releasing with configured secure at access point. Because, it is most cost effective resolution than stage of installation or other life cycle of access point.Keywords: Wireless LAN Security, Wi-Fi Security, Wireless Access Point, Product Life-Cycle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922171 Effect of DG Installation in Distribution System for Voltage Monitoring Scheme
Authors: S. R. A. Rahim, I. Musirin, M. M. Othman, M. H. Hussain
Abstract:
Loss minimization is a long progressing issue mainly in distribution system. Nevertheless its effect led to temperature rise due to significant voltage drop through the distribution line. Thus, compensation scheme should be proper scheduled in the attempt to alleviate the voltage drop phenomenon. Distributed generation has been profoundly known for voltage profile improvement; provided that over-compensation or under-compensation phenomena are avoided. This paper addresses the issue of voltage improvement through different type DG installation. In ensuring optimal sizing and location of the DGs, pre-developed EMEFA technique was made use for this purpose. Incremental loading condition subjected to the system is the concern such that it is beneficial to the power system operator.
Keywords: Distributed generation, EMEFA, power loss, voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016170 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers
Authors: M. H. Abedi, A. Jalilvand
Abstract:
The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.Keywords: Renewable energy, wind farm, optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138169 Probabilistic Method of Wind Generation Placement for Congestion Management
Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli
Abstract:
Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888168 Wind Power Assessment for Turkey and Evaluation by APLUS Code
Authors: Ibrahim H. Kilic, A. B. Tugrul
Abstract:
Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.
Keywords: APLUS, energy policy, renewable energy, wind power, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028167 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations
Authors: K. Al Ammari, B. G. Clarke
Abstract:
Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.
Keywords: Bearing capacity, design, Installation, numerical analysis, settlement, stone column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835166 Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study
Authors: Govindaraj Ramanathan
Abstract:
The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses.
Keywords: Construction management, delay, non-chronological approach, composite beam, structural integrity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892165 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel
Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho
Abstract:
The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.Keywords: Matrix cooling, rib, heat transfer, gas turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239164 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels
Authors: O. Chaudhari, A. N. Ghafar, G. Zirgulis, M. Mousavi, T. Ellison, S. Pousette, P. Fontana
Abstract:
In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.
Keywords: corrosion, durability, mortar, rock bolt
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419163 Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory
Authors: S. Rokhsari, M. Delavar, A. Sadeghi-Niaraki, A. Abed-Elmdoust, B. Moshiri
Abstract:
Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.Keywords: Aggregation, Bagging theory, Dempster-Shafer theory, Site selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706162 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems
Authors: Vladimir Veremey
Abstract:
The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.
Keywords: Antenna, antenna arrays, multiple-input-multiple-output, MIMO, millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773161 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa
Authors: Aradhna Pandarum
Abstract:
South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.
Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553160 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation
Authors: Sun Li-ping, Zhu Jian-xun, Liu Sheng-nan
Abstract:
In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.
Keywords: S-lay operation, dynamic positioning, coupling motion; time domain, allocation of thrust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778159 Construction Port Requirements for Floating Offshore Wind Turbines
Authors: Alan Crowle, Philpp Thies
Abstract:
s the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating offshore wind turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment, inter array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of size of substructures, height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However, part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost effective equipment which can be assembled in port and towed to site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment on shore means minimising highly weather dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space. The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed; however the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.
Keywords: Floating offshore wind turbine, port logistics, installation, construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504