Search results for: Medium voltage networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3428

Search results for: Medium voltage networks

3428 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network

Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi

Abstract:

A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.

Keywords: Artificial neural networks, cable, fault location andfault classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
3427 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks

Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi

Abstract:

Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.

Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
3426 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area

Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu

Abstract:

In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for 50%, 75%, and 100% loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.

Keywords: Distribution system, harmonic, technical losses, power factor (PF), total harmonic distortion (THD), residential load, medium voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
3425 Effects of Tap Changing Transformer and Shunt Capacitor on Voltage Stability Enhancement of Transmission Networks

Authors: Pyone Lai Swe, Wanna Swe, Kyaw Myo Lin

Abstract:

Voltage stability has become an important issue to many power systems around the world due to the weak systems and long line on power system networks. In this paper, MATLAB load flow program is applied to obtain the weak points in the system combined with finding the voltage stability limit. The maximum permissible loading of a system, within the voltage stability limit, is usually determined. The methods for varying tap ratio (using tap changing transformer) and applying different values of shunt capacitor injection to improve the voltage stability within the limit are also provided.

Keywords: Load flow, Voltage stability, Tap changingtransformer, Shunt capacitor injection, Voltage stability limit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5923
3424 Technique for Voltage Control in Distribution System

Authors: S. Thongkeaw, M. Boonthienthong

Abstract:

This paper presents the techniques for voltage control in distribution system. It is integrated in the distribution management system. Voltage is an important parameter for the control of electrical power systems. The distribution network operators have the responsibility to regulate the voltage supplied to consumer within statutory limits. Traditionally, the On-Load Tap Changer (OLTC) transformer equipped with automatic voltage control (AVC) relays is the most popular and effective voltage control device. A static synchronous compensator (STATCOM) may be equipped with several controllers to perform multiple control functions. Static Var Compensation (SVC) is regulation slopes and available margins for var dispatch. The voltage control in distribution networks is established as a centralized analytical function in this paper. 

Keywords: Voltage Control, Reactive Power, Distribution System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9452
3423 On the Reliability of Low Voltage Network with Small Scale Distributed Generators

Authors: Rade M. Ciric, Nikola Lj.Rajakovic

Abstract:

Since the 80s huge efforts have been made to utilize renewable energy sources to generate electric power. This paper reports some aspects of integration of the distributed generators into the low voltage distribution networks. An assessment of impact of the distributed generators on the reliability indices of low voltage network is performed. Results obtained from case study using low voltage network, are presented and discussed.

Keywords: low voltage network, distributed generation, reliability indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
3422 Broadband PowerLine Communications: Performance Analysis

Authors: Justinian Anatory, Nelson Theethayi, M. M. Kissaka, N. H. Mvungi

Abstract:

Power line channel is proposed as an alternative for broadband data transmission especially in developing countries like Tanzania [1]. However the channel is affected by stochastic attenuation and deep notches which can lead to the limitation of channel capacity and achievable data rate. Various studies have characterized the channel without giving exactly the maximum performance and limitation in data transfer rate may be this is due to complexity of channel modeling being used. In this paper the channel performance of medium voltage, low voltage and indoor power line channel is presented. In the investigations orthogonal frequency division multiplexing (OFDM) with phase shift keying (PSK) as carrier modulation schemes is considered, for indoor, medium and low voltage channels with typical ten branches and also Golay coding is applied for medium voltage channel. From channels, frequency response deep notches are observed in various frequencies which can lead to reduce the achievable data rate. However, is observed that data rate up to 240Mbps is realized for a signal to noise ratio of about 50dB for indoor and low voltage channels, however for medium voltage a typical link with ten branches is affected by strong multipath and coding is required for feasible broadband data transfer.

Keywords: Powerline Communications, branched network, channel model, modulation, channel performance, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
3421 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System

Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa

Abstract:

In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.

Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
3420 Modeling Low Voltage Power Line as a Data Communication Channel

Authors: Eklas Hossain, Sheroz Khan, Ahad Ali

Abstract:

Power line communications may be used as a data communication channel in public and indoor distribution networks so that it does not require the installing of new cables. Industrial low voltage distribution network may be utilized for data transfer required by the on-line condition monitoring of electric motors. This paper presents a pilot distribution network for modeling low voltage power line as data transfer channel. The signal attenuation in communication channels in the pilot environment is presented and the analysis is done by varying the corresponding parameters for the signal attenuation.

Keywords: Data communication, indoor distribution networks, low voltage, power line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239
3419 Stabilizing Voltage for Sheens with Motor Loading due to Starting Inductive Motor by using STATCOM

Authors: Mohammad Reza Askari, Mohsen Kazemi, Ali Asghar Baziar

Abstract:

In this treatise we will study the capability of static compensator for reactive power to stabilize sheen voltage with motor loading on power networks system. We also explain the structure and main function of STATCOM and the method to control it using STATCOM transformer current to simultaneously predict after telling about the necessity of FACTS tools to compensate in power networks. Then we study topology and controlling system to stabilize voltage during start of inductive motor. The outcome of stimulat by MATLAB software supports presented controlling idea and system in the treatise.

Keywords: Power network, inductive motor, reactive power, stability of voltage, STATCOM, FACTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
3418 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa

Authors: Aradhna Pandarum

Abstract:

South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.

Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
3417 The Effects of Multipath on OFDM Systems for Broadband Power-Line Communications a Case of Medium Voltage Channel

Authors: Justinian Anatory, N. Theethayi, R. Thottappillil, C. Mwase, N.H. Mvungi

Abstract:

Power-line networks are widely used today for broadband data transmission. However, due to multipaths within the broadband power line communication (BPLC) systems owing to stochastic changes in the network load impedances, branches, etc., network or channel capacity performances are affected. This paper attempts to investigate the performance of typical medium voltage channels that uses Orthogonal Frequency Division Multiplexing (OFDM) techniques with Quadrature Amplitude Modulation (QAM) sub carriers. It has been observed that when the load impedances are different from line characteristic impedance channel performance decreases. Also as the number of branches in the link between the transmitter and receiver increases a loss of 4dB/branch is found in the signal to noise ratio (SNR). The information presented in the paper could be useful for an appropriate design of the BPLC systems.

Keywords: Communication channel model, Power-line communication, Transfer function, Multipath, Branched network, OFDM, QAM, performance evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
3416 Modeling and Simulation of Dynamic Voltage Restorer for Mitigation of Voltage Sags

Authors: S. Ganesh, L. Raguraman, E. Anushya, J. krishnasree

Abstract:

Voltage sags are the most common power quality disturbance in the distribution system. It occurs due to the fault in the electrical network or by the starting of a large induction motor and this can be solved by using the custom power devices such as Dynamic Voltage Restorer (DVR). In this paper DVR is proposed to compensate voltage sags on critical loads dynamically. The DVR consists of VSC, injection transformers, passive filters and energy storage (lead acid battery). By injecting an appropriate voltage, the DVR restores a voltage waveform and ensures constant load voltage. The simulation and experimental results of a DVR using MATLAB software shows clearly the performance of the DVR in mitigating voltage sags.

Keywords: Dynamic voltage restorer, Voltage sags, Power quality, Injection methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4228
3415 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
3414 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators

Authors: R. Shivarudraswamy, D. N. Gaonkar

Abstract:

The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.

Keywords: Distributed generation, voltage control, sensitivity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
3413 Modal Analysis of Power System with a Microgrid

Authors: Burak Yildirim, Muhsin Tunay Gençoğlu

Abstract:

A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.

Keywords: Eigenvalue analysis, microgrid, modal analysis, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
3412 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic Voltage Restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using Matlab software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, Power quality, Voltage sags, Voltage swells, Flicker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
3411 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
3410 Artificial Voltage-Controlled Capacitance and Inductance using Voltage-Controlled Transconductance

Authors: Mansour I. Abbadi, Abdel-Rahman M. Jaradat

Abstract:

In this paper, a technique is proposed to implement an artificial voltage-controlled capacitance or inductance which can replace the well-known varactor diode in many applications. The technique is based on injecting the current of a voltage-controlled current source onto a fixed capacitor or inductor. Then, by controlling the transconductance of the current source by an external bias voltage, a voltage-controlled capacitive or inductive reactance is obtained. The proposed voltage-controlled reactance devices can be designed to work anywhere in the frequency spectrum. Practical circuits for the proposed voltage-controlled reactances are suggested and simulated.

Keywords: voltage-controlled capacitance, voltage-controlled inductance, varactor diode, variable transconductance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4782
3409 Static Voltage Stability Margin Enhancement Using SVC and TCSC

Authors: Mohammed Amroune, Hadi Sebaa, Tarek Bouktir

Abstract:

Reactive power limit of power system is one of the major causes of voltage instability. The only way to save the system from voltage instability is to reduce the reactive power load or add additional reactive power to reaching the point of voltage collapse. In recent times, the application of FACTS devices is a very effective solution to prevent voltage instability due to their fast and very flexible control. In this paper, voltage stability assessment with SVC and TCSC devices is investigated and compared in the modified IEEE 30-bus test system. The fast voltage stability indicator (FVSI) is used to identify weakest bus and to assess the voltage stability of power system.

Keywords: SVC, TCSC, Voltage stability, Fast Voltage Stability Index (FVSI), Reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4014
3408 Hybrid MAC Protocols Characteristics in Multi-hops Wireless Sensor Networks

Authors: M. Miladi, T. Ezzedine, R. Bouallegue

Abstract:

In the current decade, wireless sensor networks are emerging as a peculiar multi-disciplinary research area. By this way, energy efficiency is one of the fundamental research themes in the design of Medium Access Control (MAC) protocols for wireless sensor networks. Thus, in order to optimize the energy consumption in these networks, a variety of MAC protocols are available in the literature. These schemes were commonly evaluated under simple network density and a few results are published on their robustness in realistic network-s size. We, in this paper, provide an analytical study aiming to highlight the energy waste sources in wireless sensor networks. Then, we experiment three energy efficient hybrid CSMA/CA based MAC protocols optimized for wireless sensor networks: Sensor-MAC (SMAC), Time-out MAC (TMAC) and Traffic aware Energy Efficient MAC (TEEM). We investigate these protocols with different network densities in order to discuss the end-to-end performances of these schemes (i.e. in terms of energy efficiency, delay and throughput). Through Network Simulator (NS- 2) implementations, we explore the behaviors of these protocols with respect to the network density. In fact, this study may help the multihops sensor networks designers to design or select the MAC layer which matches better their applications aims.

Keywords: Energy efficiency, medium access control, network density, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
3407 SCR-Based Advanced ESD Protection Device for Low Voltage Application

Authors: Bo Bae Song, Byung Seok Lee, Hyun Young Kim, Chung Kwang Lee, Yong Seo Koo

Abstract:

This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3 and D4).

Keywords: ESD, SCR, Holding voltage, Latch-up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
3406 An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani

Abstract:

This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.

Keywords: Boost Convertors, Power Electronics, PID, Fuzzy logic, Open loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3804
3405 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
3404 A Study on ESD Protection Circuit Applying Silicon Controlled Rectifier-Based Stack Technology with High Holding Voltage

Authors: Hee-Guk Chae, Bo-Bae Song, Kyoung-Il Do, Jeong-Yun Seo, Yong-Seo Koo

Abstract:

In this study, an improved Electrostatic Discharge (ESD) protection circuit with low trigger voltage and high holding voltage is proposed. ESD has become a serious problem in the semiconductor process because the semiconductor density has become very high these days. Therefore, much research has been done to prevent ESD. The proposed circuit is a stacked structure of the new unit structure combined by the Zener Triggering (SCR ZTSCR) and the High Holding Voltage SCR (HHVSCR). The simulation results show that the proposed circuit has low trigger voltage and high holding voltage. And the stack technology is applied to adjust the various operating voltage. As the results, the holding voltage is 7.7 V for 2-stack and 10.7 V for 3-stack.

Keywords: ESD, SCR, latch-up, power clamp, holding voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
3403 Centralized Controller for Microgrid

Authors: Adel Hamad Rafa

Abstract:

This paper, proposes a control system for use with microgrid consiste of  multiple small scale embedded generation networks (SSEG networks) connected to the 33kV distribution network. The proposed controller controls power flow in the grid-connected mode of operation, enables voltage and frequency control when the SSEG networks are islanded, and resynchronises the SSEG networks with the utility before reconnecting them. The performance of the proposed controller has been tested in simulations using PSCAD.

Keywords: Microgrid, Small scale embedded generation, island mode, resynchronisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
3402 A High Precision Temperature Insensitive Current and Voltage Reference Generator

Authors: Kimberly Jane S. Uy, Patricia Angela Reyes-Abu, Wen Yaw Chung

Abstract:

A high precision temperature insensitive current and voltage reference generator is presented. It is specifically developed for temperature compensated oscillator. The circuit, designed using MXIC 0.5um CMOS technology, has an operating voltage that ranges from 2.6V to 5V and generates a voltage of 1.21V and a current of 6.38 ӴA. It exhibits a variation of ±0.3nA for the current reference and a stable output for voltage reference as the temperature is varied from 0°C to 70°C. The power supply rejection ratio obtained without any filtering capacitor at 100Hz and 10MHz is -30dB and -12dB respectively.

Keywords: Current reference, voltage reference, threshold voltage, temperature compensation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
3401 Energy Efficiency of Adaptive-Rate Medium Access Control Protocols for Sensor Networks

Authors: Rooholah Hasanizadeh, Saadan Zokaei

Abstract:

Energy efficient protocol design is the aim of current researches in the area of sensor networks where limited power resources impose energy conservation considerations. In this paper we care for Medium Access Control (MAC) protocols and after an extensive literature review, two adaptive schemes are discussed. Of them, adaptive-rate MACs which were introduced for throughput enhancement show the potency to save energy, even more than adaptive-power schemes. Then we propose an allocation algorithm for getting accurate and reliable results. Through a simulation study we validated our claim and showed the power saving of adaptive-rate protocols.

Keywords: Adaptive-rate, adaptive-power, MAC protocol, energy efficiency, sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
3400 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: Power quality, arc furnaces, propagation of voltage fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
3399 The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes

Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký

Abstract:

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.

Keywords: Capacitor with asymmetrical electrodes, Generated force, Heated electrode, High voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479