Search results for: Electric urban vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1887

Search results for: Electric urban vehicle

1887 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities

Authors: M. Mourad, K. Mahmoud

Abstract:

Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.

Keywords: Electrification strategy, hybrid electric vehicle, CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
1886 Pollution Control and Sustainable Urban Transport System - Electric Vehicle

Authors: M.M. Al Emran Hasan, M.Ektesabi, A.Kapoor

Abstract:

Recently electric vehicles are becoming popular as an alternative of conventional fossil fuel vehicles. Conventional Internal Combustion Engine (ICE) vehicle uses fossil fuel which contributing a major part of overall carbon emission in the environment. Carbon and other green house gas emission are responsible for global warming and resulting climate change. It becomes vital to evaluate performance of vehicle based on emission. In this paper an effort has been made to depict the picture of emission caused by vehicle and scenario of Australia has taken into account. Effort has been made to compare the fossil based vehicle with electric vehicle in phases. The study also evaluates advancement in electric vehicle technology, required infrastructure for sustainability and future scope of developments. This paper also includes the evaluation of electric vehicle concept for pollution control and sustainable transport systems in future. This study can be a benchmark for development of electric vehicle as low carbon emission alternative for the cities of tomorrow.

Keywords: Electric Vehicle, Fossil Fuel, Internal CombustionEngine, Green House Gas, In wheel motor, Smart grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
1885 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: Electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1884 A United Nations Safety Compliant Urban Vehicle Design

Authors: Marcelo R. G. Duarte, Marcilio Alves

Abstract:

Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.

Keywords: Electric urban vehicle, finite element method, global human body model, pedestrian safety, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
1883 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
1882 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
1881 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries have resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a Flat Plate Loop Heat Pipe (FPLHP) performance as a heat exchanger in thermal management system of lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces thermal resistance of 0.22 W/°C with 50°C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: Electric vehicle, flat plate loop heat pipe, lithium-ion battery, thermal management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239
1880 Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model predictive control, PID controller, Two degrees of freedom, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
1879 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: SRM, induction motor, IPM, thermal analysis, loss models, electric vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
1878 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles

Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack

Abstract:

Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photovoltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.

Keywords: Electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4199
1877 Comparison of Different PWM Switching Modes of BLDC Motor as Drive Train of Electric Vehicles

Authors: A. Tashakori, M. Ektesabi

Abstract:

Electric vehicle (EV) is one of the effective solutions to control emission of greenhouses gases in the world. It is of interest for future transportation due to its sustainability and efficiency by automotive manufacturers. Various electrical motors have been used for propulsion system of electric vehicles in last decades. In this paper brushed DC motor, Induction motor (IM), switched reluctance motor (SRM) and brushless DC motor (BLDC) are simulated and compared. BLDC motor is recommended for high performance electric vehicles. PWM switching technique is implemented for speed control of BLDC motor. Behavior of different modes of PWM speed controller of BLDC motor are simulated in MATLAB/SIMULINK. BLDC motor characteristics are compared and discussed for various PWM switching modes under normal and inverter fault conditions. Comparisons and discussions are verified through simulation results.

Keywords: BLDC motor, PWM switching technique, in-wheel technology, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4845
1876 Improvement of Ride Comfort of Turning Electric Vehicle Using Optimal Speed Control

Authors: Yingyi Zhou, Tohru Kawabe

Abstract:

With the spread of EVs (electric Vehicles), the ride comfort has been gaining a lot of attention. The influence of the lateral acceleration is important for the improvement of ride comfort of EVs as well as the longitudinal acceleration, especially upon turning of the vehicle. Therefore, this paper proposes a practical optimal speed control method to greatly improve the ride comfort in the vehicle turning situation. For consturcting this method, effective criteria that can appropriately evaluate deterioration of ride comfort is derived. The method can reduce the influence of both the longitudinal and the lateral speed changes for providing a confortable ride. From several simulation results, we can see the fact that the method can prevent aggravation of the ride comfort by suppressing the influence of longitudinal speed change in the turning situation. Hence, the effectiveness of the method is recognized.

Keywords: Electric vehicle, speed control, ride comfort, optimal control theory, driving support system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
1875 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: Electric vehicles, fuel cell, battery, regenerative braking, energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
1874 Promoting Electric Vehicles for Sustainable Urban Transport: How to Do It This Time Right

Authors: Reinhard Haas, Amela Ajanovic

Abstract:

In recent years various types of electric vehicles has gained again increasing attention as an environmentally benign technology in transport. Especially for urban areas with high local pollution this Zero-emission technology (at the point of use) is considered to provide proper solutions. Yet, the bad economics and the limited driving ranges are still major barriers for a broader market penetration of battery electric vehicles (BEV) and of fuel cell vehicles (FCV). The major result of our analyses is that the most important precondition for a further dissemination of BEV in urban areas are emission-free zones. This is an instrument which allows the promotion of BEV without providing excessive subsidies. In addition, it is important to note that the full benefits of EV can only be harvested if the electricity used is produced from renewable energy sources. That is to say, it has to be ensured that the use of BEV in urban areas is clearly linked to a green electricity purchase model. And moreover, the introduction of a CO2- emission-based tax system would support this requirement.

Keywords: Electric vehicles, economics, policies, history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1873 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: Skid-steering, Trucksim-Simulink, feedforward control, dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1872 Energy Management System in HEV Using PI Controller

Authors: S. Saravanan, G. Sugumaran

Abstract:

Nowadays the use of Hybrid Electric Vehicles (HEV) is increasing dramatically. The HEV is mainly dependent on electricity and there is always a need for storage of charge. Fuel Cell (FC), Batteries and Ultra Capacitor are being used for the proposed HEV as an electric power source or as an energy storage unit. The aim of developing an energy management technique is to utilize the sources according to the requirement of the vehicle with help of controller. This increases the efficiency of hybrid electric vehicle to reduce the fuel consumption and unwanted emission. The Maximum Power Point Tracking (MPPT) in FC is done using (Perturb & Observe) algorithm. In this paper, the control of automobiles at variable speed is achieved effectively.

Keywords: Batteries, Energy Management System (EMS), Fuel Cell (FC), Hybrid Electric Vehicles (HEVs), Maximum Power Point Tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3351
1871 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints

Authors: S. Alotaibi, S. Omer, Y. Su

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.

Keywords: Electric vehicle, fuel cell electric vehicle, hybrid electric vehicle, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
1870 Conventional Design and Simulation of an Urban Hybrid Bus

Authors: A. Khanipour, K. M. Ebrahimi, W. J. Seale

Abstract:

Due to heightened concerns over environmental and economic issues the growing important of air pollution, and the importance of conserving fossil fuel resources in the world, the automotive industry is now forced to produce more fuel efficient, low emission vehicles and new drive system technologies. One of the most promising technologies to receive attention is the hybrid electric vehicle (HEV), which consists of two or more energy sources that supply energy to electric traction motors that in turn drive the wheels. This paper presents the various structures of HEV systems, the basic theoretical knowledge for describing their operation and the general behaviour of the HEV in acceleration, cruise and deceleration phases. The conventional design and sizing of a series HEV is studied. A conventional bus and its series configuration are defined and evaluated using the ADVISOR. In this section the simulation of a standard driving cycle and prediction of its fuel consumption and emissions of the HEV are discussed. Finally the bus performance is investigated to establish whether it can satisfy the performance, fuel consumption and emissions requested. The validity of the simulation has been established by the close conformity between the fuel consumption of the conventional bus reported by the manufacturer to what has achieved from the simulation.

Keywords: Hybrid Electric Vehicle, Hybridization, LEV, HEV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
1869 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: Prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
1868 The Potential of 48V HEV in Real Driving

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.

Keywords: Customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559
1867 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Sliding Mode Control, Model Predictive Control, Integral Action, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
1866 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: Differential assisted steering, control strategy, distributed drive electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
1865 A Robust Wheel Slip Controller for a Hybrid Braking System

Authors: Martin Ringdorfer, Martin Horn

Abstract:

A robust wheel slip controller for electric vehicles is introduced. The proposed wheel slip controller exploits the dynamics of electric traction drives and conventional hydraulic brakes for achieving maximum energy efficiency and driving safety. Due to the control of single wheel traction motors in combination with a hydraulic braking system, it can be shown, that energy recuperation and vehicle stability control can be realized simultaneously. The derivation of a sliding mode wheel slip controller accessing two drivetrain actuators is outlined and a comparison to a conventionally braked vehicle is shown by means of simulation.

Keywords: Wheel slip control, sliding mode control, vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
1864 Design of a Permanent Magnet Synchronous Machine for the Hybrid Electric Vehicle

Authors: Arash Hassanpour Isfahani, Siavash Sadeghi

Abstract:

Permanent magnet synchronous machines are known as a good candidate for hybrid electric vehicles due to their unique merits. However they have two major drawbacks i.e. high cost and small speed range. In this paper an optimal design of a permanent magnet machine is presented. A reduction of permanent magnet material for a constant torque and an extension in speed and torque ranges are chosen as the optimization aims. For this purpose the analytical model of the permanent magnet synchronous machine is derived and the appropriate design algorithm is devised. The genetic algorithm is then employed to optimize some machine specifications. Finally the finite element method is used to validate the designed machine.

Keywords: Design, Finite Element, Hybrid electric vehicle, Optimization, Permanent magnet synchronous machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4115
1863 Towards Sustainable Urban Transportation Case Studies

Authors: R. M. R. Hussein

Abstract:

Climate change is one of the greatest environmental, economic, and social challenges of our time. Urban transportation has had a major negative impact on our environment—most of our air pollution comes from transport. This paper explores ways to move toward a more sustainable transport system by focusing on creating a more efficient and livable city and improving the environmental efficiency of transport activity. The analytical study covers some international examples of applying sustainable transportation and uses them to suggest a frame work to develop the transportation system in Egypt to be sustainable and more intelligent.

Keywords: Eco-efficiency, electric vehicle, liveable city, sustainable transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4560
1862 Recent Developments in Electric Vehicles for Passenger Car Transport

Authors: Amela Ajanovic

Abstract:

Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.

Keywords: Costs, fuel intensity, electric vehicles, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
1861 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1860 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: Virtual active power filter, V2G technology, model predictive control, electric vehicle, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1859 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
1858 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle

Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah

Abstract:

This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.

Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428