Search results for: zinc titanate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 692

Search results for: zinc titanate

572 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 94
571 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions

Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.

Keywords: antimicrobial, home device, SEBS, zinc

Procedia PDF Downloads 291
570 Phytoremediation of Heavy Metals by Phragmites Australis at Oeud Meboudja Annaba Algeria

Authors: Kleche Myriam, Ziane Nadia, Berrebbah Houria, Djebar Mohammed Reda

Abstract:

The Phytoremediation has now become a necessity. Thus, in our work, we are interested in the biological wastewater treatment of Oued Meboudja. The physicochemical analysis of water after treatment showed a significant reduction of suspended matter, COD and BOD5 and rate of metals in roots for example iron and zinc. We also highlighted some significant changes in biometric and physiological parameters such as increasing the number of roots and increased respiratory metabolism through the oxygen consumption in isolated roots of Phragmites australis, placed in a polluted environment.

Keywords: phragmites australis, roots, phytoremediation, iron, zinc

Procedia PDF Downloads 460
569 Structure-Based Virtual Screening to Identify CLDN4 Inhibitors

Authors: Jayanthi Sivaraman

Abstract:

Claudins are the important components of the tight junctions that play a key role in paracellular permeability. Among various members of Claudin family, Claudin 4 (CLDN4) is found to be overexpressed in ovarian, pancreatic carcinomas and other epithelial malignancies. Therefore, in this study, an attempt has been made to identify potent inhibitors for CLDN4 from the ZINC database using virtual screening, molecular docking and molecular dynamics simulations. A well refined molecular model of CLDN4 was built using Prime of Schrodinger v10.2(Template- PDB ID: 4P79). Approximately, 6 million compounds from ZINC database are subjected to high-throughput virtual screening (HTVS) against the active site of CLDN4. Molecular docking using GLIDE predicted ARG31, ASN142, ASP146 and ARG158 as critically important residues. Furthermore, three compounds from ZINC database (ZINC96331839, ZINC36533519 and ZINC75819394) showed highly promising ADME properties and binding affinity with stable conformation. The therapeutic efficiency of these lead compounds is evaluated and confirmed by in-vitro and in-vivo studies which leads to the development of novel anti-cancer drugs.

Keywords: ADME property, inhibitors, molecular docking, virtual screening

Procedia PDF Downloads 304
568 Assessment of the Effect of Cu and Zn on the Growth of Two Chlorophytic Microalgae

Authors: Medina O. Kadiri, John E. Gabriel

Abstract:

Heavy metals are metallic elements with a relatively high density, at least five times greater compared to water. The sources of heavy metal pollution in the environment include industrial, medical, agricultural, pharmaceutical, domestic effluents, and atmospheric sources, mining, foundries, smelting, and any heavy metal-based operation. Although some heavy metals in trace quantities are required for biological metabolism, their higher concentrations elicit toxicities. Others are distinctly toxic and are of no biological functions. Microalgae are the primary producers of aquatic ecosystems and, therefore, the foundation of the aquatic food chain. A study investigating the effects of copper and zinc on the two chlorophytes-Chlorella vulgaris and Dictyosphaerium pulchellum was done in the laboratory, under different concentrations of 0mg/l, 2mg/l, 4mg/l, 6mg/l, 8mg/l, 10mg/l, and 20mg/l. The growth of the test microalgae was determined every two days for 14 days. The results showed that the effects of the test heavy metals were concentration-dependent. From the two microalgae species tested, Chlorella vulgaris showed appreciable growth up to 8mg/l concentration of zinc. Dictyoshphaerium pulchellum had only minimal growth at different copper concentrations except for 2mg/l, which seemed to have relatively higher growth. The growth of the control was remarkably higher than in other concentrations. Generally, the growth of both test algae was consistently inhibited by heavy metals. Comparatively, copper generally inhibited the growth of both algae than zinc. Chlorella vulgaris can be used for bioremediation of high concentrations of zinc. The potential of many microalgae in heavy metal bioremediation can be explored.

Keywords: heavy metals, green algae, microalgae, pollution

Procedia PDF Downloads 166
567 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities

Authors: Emineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.

Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity

Procedia PDF Downloads 37
566 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed

Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera

Abstract:

The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.

Keywords: zinc oxide, chemical spray, thin films, TCO

Procedia PDF Downloads 476
565 The Evaluation of Subclinical Hypothyroidism in Children with Morbid Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Cardiovascular pathology is one of the expected consequences of excessive fat gain. The role of zinc in thyroid hormone metabolism is an important matter. The concentrations of both thyroid stimulating hormone (TSH) and zinc are subject to variation in obese individuals. Zinc exhibits protective effects on cardiovascular health and is inversely correlated with cardiovascular markers in childhood obesity. The association between subclinical hypothyroidism (SCHT) and metabolic disorders is under investigation due to its clinical importance. Underactive thyroid gland causes high TSH levels. Subclinical hypothyroidism is defined as the elevated serum TSH levels in the presence of normal free thyroxin (T4) concentrations. The aim of this study was to evaluate the associations between TSH levels and zinc concentrations in morbid obese (MO) children exhibiting SCHT. The possibility of using the probable association between these parameters was also evaluated for the discrimination of metabolic syndrome positive (MetS+) and metabolic syndrome negative (MetS-) groups. Forty-two children were present in each group. Informed consent forms were obtained. Institutional Ethics Committee approved the study protocol. Tables prepared by World Health Organization were used for the definition of MO children. Children, whose age- and sex-dependent body mass index percentile values were above 99, were defined as MO. Children with at least two MetS components were included in MOMetS+ group. Elevated systolic/diastolic blood pressure values, increased fasting blood glucose, triglycerides (TRG)/decreased high density lipoprotein-cholesterol (HDL-C) concentrations in addition to central obesity were listed as MetS components. Anthropometric measures were recorded. Routine biochemical analyses were performed. Thirteen and fifteen children had SCHT in MOMetS- and MOMetS+ groups, respectively. Statistical analyses were performed. p<0.05 was accepted as statistically significant. In MOMetS- and MOMetS+ groups, TSH levels were 4.1±2.9 mU/L and 4.6±3.1 mU/L, respectively. Corresponding values for SCHT cases in these groups were 7.3±3.1 mU/L and 8.0±2.7 mU/L. Free T4 levels were within normal limits. Zinc concentrations were negatively correlated with TSH levels in both groups. The significant negative correlation calculated in MOMetS+ group (r= -0.909; p<0.001) was much stronger than that found in MOMetS- group (r= -0.706; p<0.05). This strong correlation (r= -0.909; p<0.001) calculated for cases with SCHT in MOMetS+ group was much lower (r= -0.793; p<0.001) when all MOMetS+ cases were considered. Zinc is closely related to T4 and TSH therefore, it participates in thyroid hormone metabolism. Since thyroid hormones are required for zinc absorption, hypothyroidism can lead to zinc deficiency. The presence of strong correlations between TSH and zinc in SCHT cases found in both MOMetS- and MOMetS+ groups pointed out that MO children were under the threat of cardiovascular pathologies. The detection of the much stronger correlation in MOMetS+ group in comparison with the correlation found in MOMetS- group was the indicator of greater cardiovascular risk due to the presence of MetS. In MOMetS+ group, correlation in SCHT cases found higher than correlation calculated for all cases confirmed much higher cardiovascular risk due to the contribution of SCHT.

Keywords: cardiovascular risk, children, morbid obesity, subclinical hypothyroidism, zinc

Procedia PDF Downloads 51
564 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 328
563 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures

Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa

Abstract:

The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.

Keywords: Carrier-charge-separation, nickel, photoluminescence, sulphur, zinc oxide

Procedia PDF Downloads 275
562 The Impact of Maternal Micronutrient Levels on Risk of Offspring Neural Tube Defects in Egypt

Authors: Eman M. El-Sayed, Sahar A. Abdelaziz, Maha M. Saber Abd El Latif

Abstract:

Neural tube defects (NTD) are important causes of infant mortality. Poor nutrition was essential factor for central nervous system deformation. Mothers gave NTD offspring had abnormal serum levels of micronutrients. The present research was designed to study the effect of maternal micronutrient levels and oxidative stress on the incidence of NTD in offspring. The study included forty mothers; twenty of them of 30.9+7.28 years had conceived fetuses with NTD were considered as cases; and twenty mothers of 28.2 + 7.82 years with healthy neonates. We determined serum vitamin B12 and folic acid by using radioimmunoassays. Also, serum zinc was assessed using atomic absorption spectrophotometry. While serum copper and iron were measured colorimetrically and serum ceruloplasmin was analyzed by radialimmunodiffusion. Cases showed significantly lower levels of folic acid, vitamin B12 and zinc (P< 0.0005, 0.01, 0.01 respectively) than that of the control. Concentrations of copper, ceruloplasmin, and iron were markedly increased in cases as compared to controls (P < 0.01, 0.01, and 0.05 respectively). In conclusion, the current study clearly indicated the etiology of NTD cannot be explained with one strict etiologic mechanism, on the contrary, an interaction among maternal nutritional factors and oxidative stress would explain these anomalies. Vitamin B12, folic acid, and zinc supplementations should be considered for further decrease in the occurrence of NTD. Preventing excess iron during pregnancy favors better pregnancy outcomes.

Keywords: ceruloplasmin, copper, folic acid, iron, neural tube defects, oxidative stress, vitamin b12, zinc

Procedia PDF Downloads 195
561 Role of Zinc Adminstration in Improvement of Faltering Growth in Egyption Children at Risk of Environmental Enteric Dysfunction

Authors: Ghada Mahmoud El Kassas, Maged Atta El Wakeel

Abstract:

Background: Environmental enteric dysfunction (EED) is impending trouble that flared up in the last decades to be pervasive in infants and children. EED is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary zinc might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether zinc supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: This case–control prospective interventional study was conducted on 120 Egyptian Stunted children aged 1-10 years who recruited from the Nutrition clinic, the National research center, and 100 age and gender-matched healthy children as controls. At the primary phase of the study, Full history taking, clinical examination, and anthropometric measurements were done. Standard deviation score (SDS) for all measurements were calculated. Serum markers as Zonulin, Endotoxin core antibody (EndoCab), highly sensitive C-reactive protein (hsCRP), alpha1-acid glycoprotein (AGP), Tumor necrosis factor (TNF), and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED) were measured. Cognitive development was assessed (Bayley or Wechsler scores). Oral zinc at a dosage of 20 mg/d was supplemented to all cases and followed up for 6 months, after which the 2ry phase of the study included the previous clinical, laboratory, and cognitive assessment. Results: Serum and fecal inflammatory markers were significantly higher in cases compared to controls. Zonulin (P < 0.01), (EndoCab) (P < 0.001) and (AGP) (P < 0.03) markedly decreased in cases at the end of 2ry phase. Also (MPO), (NEO), and (AAT) showed a significant decline in cases at the end of the study (P < 0.001 for all). A significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both) was detected at end of the study, while height was not significantly affected. Cases also showed significant improvement of cognitive function at phase 2 of the study. Conclusion: Intestinal inflammatory state related to EED showed marked recovery after zinc supplementation. As a result, anthropometric and cognitive parameters showed obvious improvement with zinc supplementation.

Keywords: stunting, cognitive function, environmental enteric dysfunction, zinc

Procedia PDF Downloads 153
560 An Initial Evaluation of Newly Proposed Biomarker of Zinc Status in Humans: The Erythrocyte Linoleic Acid: Dihomo-γ-Linolenic Acid (LA:DGLA) Ratio

Authors: Marija Knez, James C.R. Stangoulis, Manja Zec, Zoran Pavlovic, Jasmina D. Martacic, Mirjana Gurinovic, Maria Glibetic

Abstract:

Background: Zinc is an essential micronutrient for humans with important physiological functions. A sensitive and specific biomarker for assessing Zn status is still needed. Objective: The major aim of this study was to examine if the changes in the content of plasma phospholipid LA, DGLA and LA: DGLA ratio can be used to efficiently predict the dietary Zn intake and plasma Zn status of humans. Methods: The study was performed on apparently healthy human volunteers. The dietary Zn intake was assessed using 24h recall questionnaires. Plasma phospholipid fatty acid analysis was done by gas chromatography and plasma analysis of minerals by atomic absorption spectrometry. Biochemical, anthropometrical and hematological parameters were assessed. Results: No significant relationship was found between the dietary and plasma zinc status (r=0.07; p=0.6). There is a statistically significant correlation between DGLA and plasma Zn (r=0.39, p=0.00). No relationship was observed between the linoleic acid and plasma Zn, while there was a significant negative correlation between LA: DGLA ratio and plasma Zn status (r=-0.35, p=0.01). Similarly, there were statistically significant difference in DGLA status (p=0.004) and LA: DGLA ratio (p=0.042) between the Zn formed groups. Conclusions: This study is an initial step in evaluating LA: DGLA ratio as a biomarker of Zn status in humans. The results are encouraging as they show that concentration of DGLA is decreased and LA: DGLA ratio increased in people with lower dietary Zn intake. However, additional studies are needed to fully examine the sensitivity of this biomarker.

Keywords: dietary Zn intake Zinc, fatty acid composition, LA: DGLA, healthy population, plasma Zn status, Zn biomarker

Procedia PDF Downloads 247
559 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles

Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose

Abstract:

The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.

Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics

Procedia PDF Downloads 86
558 Ultra-Sensitive and Real Time Detection of ZnO NW Using QCM

Authors: Juneseok You, Kuewhan Jang, Chanho Park, Jaeyeong Choi, Hyunjun Park, Sehyun Shin, Changsoo Han, Sungsoo Na

Abstract:

Nanomaterials occur toxic effects to human being or ecological systems. Some sensors have been developed to detect toxic materials and the standard for toxic materials has been established. Zinc oxide nanowire (ZnO NW) is known for toxic material. By ionizing in cell body, ionized Zn ions are overexposed to cell components, which cause critical damage or death. In this paper, we detected ZnO NW in water using QCM (Quartz Crystal Microbalance) and ssDNA (single strand DNA). We achieved 30 minutes of response time for real time detection and 100 pg/mL of limit of detection (LOD).

Keywords: zinc oxide nanowire, QCM, ssDNA, toxic material, biosensor

Procedia PDF Downloads 397
557 Structural, Electronic and Magnetic Properties of Co and Mn Doped CDTE

Authors: A. Zitouni, S. Bentata, B. Bouadjemi, T. Lantri, W. Benstaali, A. Zoubir, S. Cherid, A. Sefir

Abstract:

The structural, electronic, and magnetic properties of transition metal Co and Mn doped zinc-blende semiconductor CdTe were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA). We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. We find that the Co and Mn doped zinc blende CdTe show half-metallic behavior with a total magnetic moment of 6.0 and 10.0 µB, respectively.The results obtained, make the Co and Mn doped CdTe a promising candidate for application in spintronics.

Keywords: first-principles, half-metallic, diluted magnetic semiconductor, magnetic moment

Procedia PDF Downloads 427
556 Study Of Cu Doped Zns Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: H. Merzouka, D. T. Talantikitea, S. Fettouchib, L. Nessarkb

Abstract:

Recently New nanosized materials studies are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made in design and control fabrication of nano-structured semiconductors such as zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. Nanoparticles ZnS and Cu doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and copper acetate as Cu ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuK radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1. The transmittance is more than 70 % is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Cu doping.

Keywords: Cu doped ZnS, nanostructured, thin films, CBD, XRD, FTIR

Procedia PDF Downloads 417
555 Combined Effect of Zinc Supplementation and Ascaridia galli Infection on Oxidative Status in Broiler Chicks

Authors: Veselin Nanev, Margarita Gabrashanska, Neli Tsocheva-Gaytandzieva

Abstract:

Ascaridiasis in chicks is one of the major causes for the reduction in body weights, higher mortality, and reduction in egg production, worse meat quantity, pathological lesions, blood losses, and secondary infections. It is responsible for economic losses to the poultry. Despite being economically important parasite, little work has been carried out on the role of antioxidants in the pathogenesis of ascaridiasis. Zinc is a trace elements with multiple functions and one of them is its antioxidant ability. The aim of this study was to investigate the combined effect of organic zinc compound (2Gly.ZnCl22H20) and Ascaridia galli infection on the antioxidant status of broiler chicks. The activity of antioxidant enzymes superoxide dismutase, glutathione peroxidase, the level of lipid peroxidation, expressed by malonyl dialdexyde and plasma zinc in chicks experimentally infected with Ascaridia galli was investigated. Parasite burden was studied as well. The study was performed on 80 broiler chicks, Cobb 500 hybrids. They were divided into four groups – 1st group – control (non-treated and non-infected, 2nd group – infected with embryonated eggs of A. galli and without treatment, 3rd group- only treated with 2Gly.ZnCl22H20 compound and gr. 4 - infected and supplemented with Zn-compound. The chicks in gr. 2 and 4 were infected orally with 450 embryonated eggs of A.galli on day 14 post infection. The chicks from gr. 3 and 4 received 40 mg Zn compound /kg of feed after the 1st week of age during 10 days. All chicks were similarly fed, managed and killed at 60 day p.i. Helminthological, biochemical and statistical methods were applied. Reduced plasma Zn content was observed in the infected chicks compared to controls. Zinc supplementation did not restored the lower Zn content. Cu, Zn-SOD was decreased significantly in the infected chicks compared to controls. The GPx – activity was significantly increased in the infected chicks than the controls. Increased GPx activity together with decreased Cu/ZnSOD activity revealed unbalanced antioxidant defense capacity. The increased MDA level in chicks and changes in the activity of the enzymes showed a development of oxidative stress during the infection with A.galli. Zn compound supplementation has been shown to influence the activity of both antioxidant enzymes (SOD, GPx) and reduced MDA in the infected chicks. Organic zinc supplementation improved the antioxidant defense and protect hosts from oxidant destruction, but without any effect on the parasite burden. The number of helminths was similar in both groups. Zn supplementation did not changed the number of parasites. Administration of oral 2Gly.ZnCl22H20 compound has been shown to be useful in chicks infected with A. galli by its improvement of their antioxidant potential.

Keywords: Ascaridia galli, antioxidants, broiler chicks, zinc supplementation

Procedia PDF Downloads 108
554 Determination of Cadmium , Lead, Nickel, and Zinc in Some Green Tea Samples Collected from Libyan Markets

Authors: Jamal A. Mayouf, Hashim Salih Al Bayati

Abstract:

Green tea is one of the most common drinks in all cities of Libyan. Heavy metal contents such as cadmium (Cd), lead (Pb), nickel (Ni) and zinc (Zn) were determined in four green tea samples collected from Libyan market and their tea infusions by using atomic emission spectrophotometry after acid digestion. The results obtained indicate that the concentrations of Cd, Pb, Ni, and Zn in tea infusions samples ranged from 0.07-0.12, 0.19-0.28, 0.09-0.15, 0.18-0.43 mg/l after boiling for 5 min., 0.06-0.08, 0.18-0.23, 0.08-0.14, 0.17-0.27 mg/l after boiling for 10 min., 0.07-0.11, 0.18-0.24, 0.08-0.14, 0.21-0.34 mg/l after boiling for 15 min. respectively. On the other hand, the concentrations of the same element mentioned above obtained in tea leaves ranged from 6.0-18.0, 36.0-42.0, 16.0-20.0, 44.0-132.0 mg/kg respectively. The concentrations of Cd, Pb, Ni and Zn in tea leaves samples were higher than Prevention of Food Adulteration (PFA) limit and World Health Organization(WHO) permissible limit.

Keywords: tea, infusion, metals, Libya

Procedia PDF Downloads 376
553 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application

Authors: Adeshina Fadeyibi

Abstract:

Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.

Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging

Procedia PDF Downloads 89
552 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site.

Keywords: air pollution, air quality, polution, monitoring

Procedia PDF Downloads 294
551 Effect of Phosphate and Zinc Biofertilizers on Seed Yield and Molar Ratio of Phytic Acid to Zinc in Two Cultivars of Bean (Phaseolus vulgaris L.)

Authors: M. Mohammadi

Abstract:

In order to evaluate the effect of phosphate and Zn bio-fertilizers on the yield, phytic acid (PA), Zn concentration and PA/Zn molar ratio in bean, a field experiment was carried out for two years. The treatments included two cultivars of bean (Talash and Sadri), four levels of P (P0, P1: 100 kg ha-1 triple super phosphate (TSP), P2: 50 kg ha-1 TSP + phosphate bio-fertilizer, P3: phosphate bio-fertilizer), three levels of Zn (Zn0, Zn1: 50 kg ha-1 ZnSO4, Zn2: Zn bio-fertilizer). Phosphate bio-fertilizer consisted of inoculum of mycorrhizal fungus and Azotobacter and Zn bio-fertilizer consisted of Pseudomonas bacteria. The results revealed that there was significant difference between yield and Zn concentration between years. The effect of cultivar was significant on studied parameters. The lowest content of PA and PA/Zn were obtained from Talash. P treatment caused to significant difference on parameters in which P2 caused to increase yield, P and Zn concentration, and decrease PA and PA/Zn by 21.8%, 38.2%, 33.4%, 17.4% and 38.6% respectively. Zn treatment caused to significant difference on studied parameters. The maximum number of parameters were obtained from Zn1 and Zn2. The higher Zn concentration led to lower content of PA and PA/Zn. Using of P and Zn bio–fertilizers were caused to increasing nutrient uptake, improving growth condition and reducing PA and PA/Zn molar ratio.

Keywords: mycorrhizae, phosphorus, pseudomonas, zinc

Procedia PDF Downloads 228
550 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide

Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz

Abstract:

In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.

Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide

Procedia PDF Downloads 137
549 Morphostructural Characterization of Zinc and Manganese Nano-Oxides

Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu

Abstract:

The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.

Keywords: characterization, morphological, nano-oxides, structural

Procedia PDF Downloads 243
548 Determination of Lead , Cadmium, Nickel and Zinc in Some Green Tea Samples Collected from Libyan Markets

Authors: Jamal A. Mayouf, Hashim Salih Al Bayati, Eltayeb M. Emmima

Abstract:

Green tea is one of the most common drinks in all cities of Libyan. Heavy metal contents such as cadmium (Cd), lead (Pb), nickel (Ni) and zinc (Zn) were determined in four green tea samples collected from Libyan market and their tea infusions by using atomic emission spectrophotometry after acid digestion. The results obtained indicate that the concentrations of Cd, Pb, Ni and Zn in tea infusions samples ranged from 0.07-0.12, 0.19-0.28, 0.09-0.15, 0.18-0.43 mg/l after boiling for 5 min., 0.06-0.08, 0.18-0.23, 0.08-0.14, 0.17-0.27 mg/l after boiling for 10 min., 0.07-0.11, 0.18-0.24, 0.08-0.14, 0.21-0.34 mg/l after boiling for 15 min. respectively. On the other hand, the concentrations of the same element mentioned above obtained in tea leaves ranged from 6.0-18.0, 36.0-42.0, 16.0-20.0, 44.0-132.0 mg/kg respectively. The concentrations of Cd, Pb, Ni and Zn in tea leaves samples were higher than Prevention of Food Adulteration (PFA) limit and World Health Organization(WHO) permissible limit.

Keywords: boiling, infusion, metals, tea

Procedia PDF Downloads 353
547 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

Authors: Merve Küçük, M. Lütfi Öveçoğlu

Abstract:

Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.

Keywords: dip coating, polyester fabrics, sol gel, zinc oxide

Procedia PDF Downloads 407
546 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop

Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti

Abstract:

The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.

Keywords: residual boron, zinc, rice, wheat

Procedia PDF Downloads 123
545 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats

Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram

Abstract:

The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.

Keywords: organic zinc, immune, rats, reproductive

Procedia PDF Downloads 261
544 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 49
543 Assessment of Some Heavy Metals (Manganese, Copper, Nickel and Zinc) in Muscle and Liver of the African Catfish (Clarias gariepinus) in Ilushi River, Nigeria

Authors: Joshua I. Izegaegbe, Femi F. Oloye, Catherine E. Nasiru

Abstract:

This study determined the level of manganese, zinc, copper, and nickel in the liver and muscle of the African Catfish, Clarias gariepinus from Ilushi River, Edo State, Nigeria with a view to determining the extent of contamination. Heavy metal determination of digested fish samples was done using the atomic absorption spectrophotometric method. The results show that the muscles and livers were contaminated to varying levels with the presence of some non-metallic elements. The heavy metal load revealed that zinc had the highest mean concentration of 0.217±0.008µg/g in liver and 0.130±0.006µg/g in muscle, while copper recorded the least concentration in liver 0.063±0.004µg/g and 0.027±0.003µg/gin muscle. The distribution of the heavy metals in the muscles and livers of Clarias gariepinus showed significant variations and the results also revealed that the concentration of heavy metals (Zn, Cu,Ni and Mn) found in the liver was higher than those found in the muscle. This indicates that the liver is a better accumulator of heavy metal in Clarias gariepinus than the muscles. On comparison with WHO/FAO/FEPA/USFDA standards, the study shows that the concentrations of heavy metals in liver and muscle were within permissible limits safe for human consumption.

Keywords: clarias gariepinus, heavy metals, liver, muscle

Procedia PDF Downloads 185