Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 605

Search results for: ultraviolet germicidal irradiation

605 Numerical Study of UV Irradiation Effect on Air Disinfection Systems

Authors: H. Shokouhmand, M. Degheh, B. Sajadi, H. Sobhani

Abstract:

The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper.

Keywords: CFD, microorganism, two-phase flow, ultraviolet germicidal irradiation

Procedia PDF Downloads 223
604 Numerical Simulation of Solar Reactor for Water Disinfection

Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik

Abstract:

Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.

Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent

Procedia PDF Downloads 267
603 Application of UV-C Irradiation on Quality and Textural Properties of Button Mushrooms

Authors: M. Ghasemi-Varnamkhasti, S. H. Yoosefian. A. Mohammad- Razdari

Abstract:

The effect of 1.0 kJ/m2 Ultraviolet-C (UV-C) light on pH, weight loss, color, and firmness of button mushroom (Agaricus bisporus) tissues during 21-days storage at 4 ºC was studied. UV-C irradiation enhanced pH, weight, color parameters, and firmness of mushroom during storage compared to control treatment. However, application of 1.0 kJ/m2 UV-C treatment could effectively induce the increase of weight loss, firmness, and pH to 14.53%, 49.82%, and 10.39%, respectively. These results suggest that the application of UV-C irradiation could be an effective method to maintain the postharvest quality of mushrooms.

Keywords: mushroom, polyethylene film, quality, UV-c irradiation

Procedia PDF Downloads 208
602 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye

Authors: Vishakha Parihar

Abstract:

This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.

Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process

Procedia PDF Downloads 64
601 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique

Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah

Abstract:

Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.

Keywords: gamma irradiation, lead glass, leaching, structural

Procedia PDF Downloads 313
600 Rearrangement and Depletion of Human Skin Folate after UVA Exposure

Authors: Luai Z. Hasoun, Steven W. Bailey, Kitti K. Outlaw, June E. Ayling

Abstract:

Human skin color is thought to have evolved to balance sufficient photochemical synthesis of vitamin D versus the need to protect not only DNA but also folate from degradation by ultraviolet light (UV). Although the risk of DNA damage and subsequent skin cancer is related to light skin color, the effect of UV on skin folate of any species is unknown. Here we show that UVA irradiation at 13 mW/cm2 for a total exposure of 187 J/cm2 (similar to a maximal daily equatorial dose) induced a significant loss of total folate in epidermis of ex vivo white skin. No loss was observed in black skin samples, or in the dermis of either color. Interestingly, while the concentration of 5 methyltetrahydrofolate (5-MTHF) fell in white epidermis, a concomitant increase of tetrahydrofolic acid was found, though not enough to maintain the total pool. These results demonstrate that UVA indeed not only decreases folate in skin, but also rearranges the pool components. This could be due in part to the reported increase of NADPH oxidase activity upon UV irradiation, which in turn depletes the NADPH needed for 5-MTHF biosynthesis by 5,10-methylenetetrahydrofolate reductase. The increased tetrahydrofolic acid might further support production of the nucleotide bases needed for DNA repair. However, total folate was lost at a rate that could, with strong or continuous enough exposure to ultraviolet radiation, substantially deplete light colored skin locally, and also put pressure on total body stores for individuals with low intake of folate.

Keywords: depletion, folate, human skin, ultraviolet

Procedia PDF Downloads 283
599 Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation

Authors: William Sidharta, Chin-Tu Lu

Abstract:

Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp.

Keywords: CFX simulation, fluorescent UV lamp, lamp tube reflector, UV light

Procedia PDF Downloads 388
598 Mechanistic Structural Insights into the UV Induced Apoptosis via Bcl-2 proteins

Authors: Akash Bera, Suraj Singh, Jacinta Dsouza, Ramakrishna V. Hosur, Pushpa Mishra

Abstract:

Ultraviolet C (UVC) radiation induces apoptosis in mammalian cells and it is suggested that the mechanism by which this occurs is the mitochondrial pathway of apoptosis through the release of cytochrome c from the mitochondria into the cytosol. The Bcl-2 family of proteins pro-and anti-apoptotic is the regulators of the mitochondrial pathway of apoptosis. Upon UVC irradiation, the proliferation of apoptosis is enhanced through the downregulation of the anti-apoptotic protein Bcl-xl and up-regulation of Bax. Although the participation of the Bcl-2 family of proteins in apoptosis appears responsive to UVC radiation, to the author's best knowledge, it is unknown how the structure and, effectively, the function of these proteins are directly impacted by UVC exposure. In this background, we present here a structural rationale for the effect of UVC irradiation in restoring apoptosis using two of the relevant proteins, namely, Bid-FL and Bcl-xl ΔC, whose solution structures have been reported previously. Using a variety of biophysical tools such as circular dichroism, fluorescence and NMR spectroscopy, we show that following UVC irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV exposure than Bid-FL. From the NMR data, dramatic structural perturbations (α-helix to β-sheet) are seen to occur in the BH3 binding region, a crucial segment of Bcl-xlΔC which impacts the efficacy of its interactions with pro-apoptotic tBid. These results explain the regulation of apoptosis by UVC irradiation. Our results on irradiation dosage dependence of the structural changes have therapeutic potential for the treatment of cancer.

Keywords: Bid, Bcl-xl, UVC, apoptosis

Procedia PDF Downloads 5
597 Antioxidant Defense Mechanisms in Murine Epidermis and Dermis and Their Responses to Ultraviolet Light

Authors: Ben Abderrahmane Ayoub El Fateh, Bnina Rachid

Abstract:

A comprehensive comparison of antioxidant defenses in the dermis and epidermis and their response to exposure to ultraviolet (UV) irradiation has not previously been attempted. In this study, enzymic and non-enzymic antioxidants in epidermis and dermis of hairless mice were compared. Enzyme activities are presented both as units/gram of skin and units/milligram of protein; arguments are presented for the superiority of skin wet weight as a reference base. Catalase, glutathione peroxidase, and glutathione reductase (units/gram of skin) were higher in the epidermis than dermis by 49%, 86%, and 74%, respectively. Superoxide dismutase did not follow this pattern. Lipophilic antioxidants ( -tocopherol, ubiquinol 9, and ubiquinone 9) and hydrophilic antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione) were 24–95% higher in the epidermis than in dermis. In contrast, oxidized glutathione was 60% lower in the epidermis than in dermis. Mice were irradiated with solar light to examine the response of these cutaneous layers to UV irradiation. After irradiation with 25 J/cm2 (UVA + UVB, from a solar simulator), 10 times the minimum erythemal dose, epidermal and dermal catalase and superoxide dismutase activities were greatly decreased. Tocopherol, ubiquinol 9, ubiquinone 9, ascorbic acid, dehydroascorbic acid, and reduced glutathione decreased in both epidermis and dermis by 26-93%. Oxidizedgiutathione showed a slight, non-significant increase. Because the reduction in total ascorbate and catalase was much more severe in the epidermis than dermis, it can be concluded that UV light is more damaging to the antioxidant defenses in the epidermis than in the dermis.

Keywords: antioxidant defenses, enzymic, epidermis, oxidizedgiutathione

Procedia PDF Downloads 358
596 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 347
595 Growth of Droplet in Radiation-Induced Plasma of Own Vapour

Authors: P. Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: irradiation, steam, plasma, cluster formation, liquid droplets, evolution

Procedia PDF Downloads 374
594 Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell

Authors: Mazouz Halima, Belghachi Abdrahmane

Abstract:

Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure.

Keywords: InP solar cell, p/n and n/p structure, electron irradiation, output parameters

Procedia PDF Downloads 388
593 Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy

Authors: Pooyan Changizian, Zhongwen Yao

Abstract:

The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples.

Keywords: Inconel X-750, nanoindentation, helium bubbles, defects

Procedia PDF Downloads 139
592 Theoretical Research for Influence of Irradiation on Transient Creep of Metals

Authors: Pavlo Selyshchev, Tetiana Didenko

Abstract:

Via formalism of the Complex systems and in the framework of the climb - glide model a theoretical approach to describe the influence of irradiation on transient creep of metals. We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion that consists in climb and glide. It is shown that there are qualitatively different regimes of a creep as a result of irradiation. Simulation and analysis of this phenomenon are performed. The time dependence of creep rate of metal under an irradiation is theoretically obtained. The conditions of zero minimums of the creep-rate existence as well as the times of their appearance are determined. The changing of the position of creep-rate dips in the conditions of the temperature exposure change is investigated. The obtained results are compared with the experimentally observed dependence of the creep rate on time.

Keywords: creep, climb and glide of dislocations, irradiation, non-linear feed-back, point defects

Procedia PDF Downloads 123
591 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment

Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo

Abstract:

Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.

Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature

Procedia PDF Downloads 212
590 Effect of Gamma Irradiation on Structural and Optical Properties of ZnO/Mesoporous Silica Nanocomposite

Authors: K. Sowri Babu, P. Srinath, N. Rajeswara Rao, K. Venugopal Reddy

Abstract:

The effect of gamma ray irradiation on morphology and optical properties of ZnO/Mesoporous silica (MPS) nanocomposite was studied. The ZnO/MPS nanocomposite was irradiated with gamma rays of doses 30, 60, and 90 kGy and dose-rate of irradiation was 0.15 kGy/hour. Irradiated samples are characterized with FE-SEM, FT-IR, UV-vis, and Photoluminescence (PL) spectrometers. SEM pictures showed that morphology changed from spherical to flake like morphology. UV-vis analysis showed that the band gap increased with increase of gamma ray irradiation dose. This enhancement of the band gap is assigned to the depletion of oxygen vacancies with irradiation. The intensity of PL peak decreased gradually with increase of gamma ray irradiation dose. The decrease in PL intensity is attributed to the decrease of oxygen vacancies at the interface due to poor interface and improper passivation between ZnO/MPS.

Keywords: ZnO nanoparticles, nanocomposites, mesoporous silica, photoluminescence

Procedia PDF Downloads 126
589 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 283
588 Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating

Authors: Artemova Anastasiia, Shen Zexiang, Savilov Serguei

Abstract:

The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation.

Keywords: corrosion, coating, carbon nanotubes, degradation

Procedia PDF Downloads 64
587 Influence of Single Source Irradiation on the Homogeneous Alignment of Liquid Crystals Molecules on Glass Substrates

Authors: Sarah Akhtar, Rizwan Mahmood

Abstract:

A detailed study of homogeneous alignment of liquid crystal molecules on a glass substrate will be presented. Thin films of polyimide were coated on several glass substrates. Various methods were employed to prepare coated surfaces to achieve desired alignment; these include traditionally rubbing the surface with a felt cloth then exposing them perpendicular to the easy axis with incandescent light (IL), linearly polarized ultraviolet (LPUVR) and un-polarized ultraviolet (UPUVR) radiation. The quality of the alignment was tested by measuring the tilt angle in the temperature range between 30°C to 55°C. Regression analysis of the data using ‘SigmaPlot’ suggests a gradual increase in tilt angle (1.1°-1.8°) for the rubbed, 0.6° to 3.6° increase for the rubbed plus IL radiated and 1.6° to 4.6° for the rubbed plus UPUVL radiated samples, respectively. However to our surprise, we found tilt angle to be decreasing from 2.4° to 1.6° for the rubbed plus LPUVL radiated samples. We hope that these findings will be helpful in the fabrication of display panels and other electro-optic devices.

Keywords: homogeneous, liquid crystals, polyimide, tilt angle

Procedia PDF Downloads 44
586 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose

Procedia PDF Downloads 164
585 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method

Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.

Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic

Procedia PDF Downloads 232
584 Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy

Authors: Jing Zhang, Yongqin Chang, Yongwei Wang, Xiaolin Li, Shaoning Jiang, Farong Wan, Yi Long

Abstract:

Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases.

Keywords: irradiation, Fe-0.2wt.%V alloy, microstructures, hardness

Procedia PDF Downloads 281
583 Removal of Oxytetracycline Using Sonophotocatalysis: Parametric Study

Authors: Bouafia-Chergui Souâd, Chabani Malika, Bensmaili Aicha

Abstract:

Water treatment and especially, medicament pollutants are nowadays important problems. Degradation of oxytetracycline was carried out using combined process of low-frequency ultrasound (US), ultraviolet irradiation and a catalyst. The effectiveness of the coupled processes has been evaluated by studying the effects of various operating parameters including initial OTC concentration, solution pH and catalyst mass. For the photolysis process, the monochromatic ultraviolet light wavelength utilized was 365 nm. The sonolysis experiments were performed with ultrasound at a frequency of 40 kHz. The heterogeneous photocatalysis was studied in the presence of TiO2. The processes were employed individually, and simultaneously to examine the details of the processes and to investigate the contribution of each process. Low UV intensity (12W), low pH and high mass of TiO2 conditions enhanced the sono-photocatalytic degradation of OTC. The results showed that the individual contribution sonochemical and photochemical reactions are very low, however, their coupling increases the degradation rate of 8 times compared to photolysis and 2 times compared to sonolysis. There is a synergistic effect between the two modes of radiation, UV and U.S. leading to 82.04% degradation yield. An application of these combined processes on the treatment of a real pharmaceutical wastewater was examined.

Keywords: sonolysis, photocatalysis, combined process, antibiotic

Procedia PDF Downloads 191
582 Study of Laser Induced Damage Threshold in HfO₂/SiO₂ Multilayer Films after β-Ray Irradiation

Authors: Meihua Fang, Tao Fei

Abstract:

Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO₂/SiO₂ multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold (LIDT), which includes defects, surface roughness, packing density, and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm² to 12 J/cm², i.e., 50% increase, after the film has been irradiated by 2.2×10¹³/cm² β-ray, the particle irradiation can be used as a controllable and desirable post-processing method to improve the resistance to laser induced damage.

Keywords: β-ray irradiation, multilayer film, residual stress, laser-induced damage threshold

Procedia PDF Downloads 59
581 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation

Authors: Pavlo Selyshchev, Tetiana Didenko

Abstract:

Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.

Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects

Procedia PDF Downloads 124
580 Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)

Authors: Adriana Souza M. Batista, Cláubia Pereira, Luiz O. Faria

Abstract:

The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing.

Keywords: differential scanning calorimetry, gamma irradiation, PVDF, X-ray diffraction technique

Procedia PDF Downloads 306
579 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity

Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee

Abstract:

Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.

Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant

Procedia PDF Downloads 332
578 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 2
577 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x

Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze

Abstract:

On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.

Keywords: InAs, InP, solid solutions, irradiation

Procedia PDF Downloads 86
576 Radiation Stability of Pigment ZnO Modified by Nanopowders

Authors: Chundong Li, V. V. Neshchimenko, M. M. Mikhailov

Abstract:

The effect of the modification of ZnO powders by ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 nanoparticles with a concentration of 1-30 wt % is investigated by diffuse reflectance spectra within the wavelength range 200 to 2500 nm before and after 100 keV proton and electron irradiation. It has been established that the introduction of nanoparticles ZrO2, Al2O3 enhances the optical stability of the pigments under proton irradiation, but reduces it under electron irradiation. Modifying with TiO2, SiO2, CeO2, Y2O3 nanopowders leads to decrease radiation stability in both types of irradiation. Samples modified by 5 wt. % of ZrO2 nanoparticles have the highest stability of optical properties after proton exposure. The degradation of optical properties under electron irradiation is not high for this concentration of nanoparticles. A decrease in the absorption of pigments modified with nanoparticles proton exposure is determined by a decrease in the intensity of bands located in the UV and visible regions. After electron exposure the absorption bands have in the whole spectrum range.

Keywords: irradiation, nanopowders, radiation stability, zinc oxide

Procedia PDF Downloads 351