Search results for: tumor inhibition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1705

Search results for: tumor inhibition

1495 Studying the Anti-Cancer Effects of Thymoquinone on Tumor Cells Through Natural Killer Cells Activity

Authors: Nouf A. Aldarmahi, Nesrin I. Tarbiah, Nuha A. Alkhattabi, Huda F. Alshaibi

Abstract:

Nigella sativa which is known as dark cumin is a well-known example for a widely applicable herbal medicine. Nigella sativa can be effective in a variety of diseases such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer effect of Nigella sativa appeared to be mediated by immune-modulatory effect through stimulating human natural killer (NK) cells. This is a type of lymphocytes which is part of the innate immunity, also known as the first line of defense in the body against pathogens. This study investigated the effect of thymoquinone as a major component of Nigella sativa on the molecular cytotoxic pathway of NK cell and the role of thymoquinone therapeutic effect on NK cells. NK cells were cultured with breast tumor cells in different ways and cultured media was collected and the concentration of perforin, granzyme B and interferon-α were measured by ELISA. The cytotoxic effect of NK cells on breast tumor cells was enhanced in the presence of thymoquinone, with increased activity of perforin in NK cells. This improved anticancer effect of thymoquinone on breast cancer cells.

Keywords: breast cancer, cancer cells, natural killer cells, thymoquinone

Procedia PDF Downloads 215
1494 Enhancing Inhibition on Phytopathogens by Complex Using Biogas Slurry

Authors: Fang-Bo Yu, Li-Bo Guan, Sheng-Dao Shan

Abstract:

Biogas slurry was mixed with six commercial fungicides and screening against 11 phytopathogens was carried out. Results showed that inhibition of biogas slurry was different for the test strains and no significant difference between treatments of Didymella bryoniae, Fusarium oxysporum f. sp. vasinfectum, Aspergillus niger, Rhizoctonia cerealis, F. graminearum and Septoria tritici was observed. However, significant differences were found among Penicillium sp., Botrytis cinerea, Alternaria sonali, F. oxysporum F. sp. melonis and Sclerotinia sclerotiorum. The approach described here presents a promising alternative to current manipulation although some issues still need further examination. This study could contribute to the development of sustainable agriculture and better utilization of biogas slurry.

Keywords: anaerobic digestion, biogas slurry, phytopathogen, sustainable agriculture

Procedia PDF Downloads 297
1493 Rapid Mitochondrial Reactive Oxygen Species Production Precedes NF-κB Activation and Pro-inflammatory Responses in Macrophages

Authors: Parinaz Tavakoli Zaniani, Dimitrios Balomenos

Abstract:

Mitochondrial reactive oxygen species (mROS) play a crucial role in macrophage pro-inflammatory activation, although a detailed understanding of the mechanism and kinetics by which mROS drive signaling molecules is still lacking. In general, it is thought that NF-κB activation drives mROS and general ROS production. Here, We performed a detailed kinetic analysis of mROS production during macrophage activation. We found early mROS generation after LPS (lipopolysaccharide) stimulation. Remarkably as early as 5 minutes, mROS signaling promoted initial NF-κB, MAPK activation and pro-inflammatory cytokine production, as established through inhibition or quenching of mROS. On the contrary, NF-κB inhibition had no effect on mROS production. Our findings point to a mechanism by which mROS increase TRAF-6 ubiquitination and, thus NF-κB activity. mROS inhibition reduced LPS-induced lethality in an in vivo septic shock model by controlling pro-inflammatory cytokine production. Overall, our research provides novel insights into the role of mROS as a primary messenger in the pathway of macrophage and as a regulator of inflammatory responses. We found that early mROS production promotes initial NF-κB, and MAPK activation by regulating TRAF-6 ubiquitination and that mROS inhibition can reduce LPS-induced inflammatory cytokines and lethality in a septic shock model. These findings might lead to novel immunotherapeutic strategies targeting early mROS production and control of extreme inflammation in the context of sepsis and other inflammatory diseases.

Keywords: mitochondria, reactive oxygen species, nuclear factor κB, lipopolysaccharide, macrophages

Procedia PDF Downloads 45
1492 Development of a Humanized Anti-CEA Antibody for the Near Infrared Optical Imaging of Cancer

Authors: Paul J Yazaki, Michael Bouvet, John Shively

Abstract:

Surgery for solid gastrointestinal (GI) cancers such as pancreatic, colorectal, and gastric adenocarcinoma remains the mainstay of curative therapy. Complete resection of the primary tumor with negative margins (R0 resection), its draining lymph nodes, and distant metastases offers the optimal surgical benefit. Real-time fluorescence guided surgery (FGS) promises to improve GI cancer outcomes and is rapidly advancing with tumor-specific antibody conjugated fluorophores that can be imaged using near infrared (NIR) technology. Carcinoembryonic Antigen (CEA) is a non-internalizing tumor antigen validated as a surface tumor marker expressed in >95% of colorectal, 80% of gastric, and 60% of pancreatic adenocarcinomas. Our humanized anti-CEA hT84.66-M5A (M5A) monoclonal antibody (mAb)was conjugated with the NHS-IRDye800CW fluorophore and shown it can rapidly and effectively NIRoptical imageorthotopically implanted human colon and pancreatic cancer in mouse models. A limitation observed is that these NIR-800 dye conjugated mAbs have a rapid clearance from the blood, leading to a narrow timeframe for FGS and requiring high doses for effective optical imaging. We developed a novel antibody-fluorophore conjugate by incorporating a PEGylated sidearm linker to shield or mask the IR800 dye’s hydrophobicity which effectively extended the agent’s blood circulation half-life leading to increased tumor sensitivity and lowered normal hepatic uptake. We hypothesized that our unique anti-CEA linked to the fluorophore, IR800 by PEGylated sidewinder, M5A-SW-IR800 will become the next generation optical imaging agent, safe, effective, and widely applicable for intraoperative image guided surgery in CEA expressing GI cancers.

Keywords: optical imaging, anti-CEA, cancer, fluorescence-guided surgery

Procedia PDF Downloads 119
1491 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion

Authors: Hossain A, Hossain S.

Abstract:

Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.

Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate

Procedia PDF Downloads 72
1490 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth

Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid

Abstract:

Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.

Keywords: rhizobacteria, chili, phytophthora, root rot

Procedia PDF Downloads 232
1489 ALDH1A1 as a Cancer Stem Cell Marker: Value of Immunohistochemical Expression in Benign Prostatic Hyperplasia, Prostatic Intraepithelial Neoplasia, and Prostatic Adenocarcinoma

Authors: H. M. Abdelmoneim, N. A. Babtain, A. S. Barhamain, A. Z. Kufiah, A. S. Malibari, S. F. Munassar, R. S. Rawa

Abstract:

Introduction: Prostate cancer is one of the most common causes of morbidity and mortality in men in developed countries. Cancer Stem Cells (CSCs) could be responsible for the progression and relapse of cancer. Therefore, CSCs markers could provide a prognostic strategy for human malignancies. Aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been shown to be associated with tumorigenesis and proposed to represent a functional marker for tumor initiating cells in various tumor types including prostate cancer. Material & Methods: We analyzed the immunohistochemical expression of ALDH1A1 in benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma and assessed their significant correlations in 50 TURP sections. They were microscopically interpreted and the results were correlated with histopathological types and tumor grade. Results: In different prostatic histopathological lesions we found that ALDH1A1 expression was low in BPH (13.3%) and PIN (6.7%) and then its expression increased with prostatic adenocarcinoma (40%), and this was statistically highly significant (P value = 0.02). However, in different grades of prostatic adenocarcinoma we found that the higher the Gleason grade the higher the expression for ALDH1A1 and this was statistically significant (P value = 0.02). We compared the expression of ALDH1A1 in PIN and prostatic adenocarcinoma. ALDH1A1 expression was decreased in PIN and highly expressed in prostatic adenocarcinoma and this was statistically significant (P value = 0.04). Conclusion: Increasing ALDH1A1 expression is correlated with aggressive behavior of the tumor. Immunohistochemical expression of ALDH1A1 might provide a potential approach to study tumorigenesis and progression of primary prostate carcinoma.

Keywords: ALDH1A1, BPH, PIN, prostatic adenocarcinoma

Procedia PDF Downloads 237
1488 The Effect of a Muscarinic Antagonist on the Lipase Activity

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Lipases constitute one of the most important groups of industrial enzymes that catalyze the hydrolysis of triacylglycerol to glycerol and fatty acids. Muscarinic antagonist relieves smooth muscle spasm of the gastrointestinal tract and effect on the cardiovascular system. In this research, the effect of a muscarinic antagonist on the lipase activity of Pseudomonas aeruginosa was studied. Lineweaver–Burk plot showed that the drug inhibited the enzyme by competitive inhibition. The IC50 value (60 uM) and Ki (30 uM) of the drug revealed the drug bound to the enzyme with high affinity. Determination of enzyme activity in various pH and temperature showed that the maximum activity of lipase was at pH 8 and 60°C both in presence and absence of the drug.

Keywords: bacteria, inhibition, kinetics, lipase

Procedia PDF Downloads 424
1487 Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy

Authors: Dipranjan Laha, Parimal Karmakar

Abstract:

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India.

Keywords: nanoparticle, autophagy, apoptosis, siRNA-mediated inhibition

Procedia PDF Downloads 420
1486 Theoretical Study of Carbonic Anhydrase-Ii Inhibitors for Treatment of Glaucoma

Authors: F. Boukli Hacene, W. Soufi, S. Ghalem

Abstract:

Glaucoma disease is a progressive degenerative optic neuropathy, with irreversible visual field deficits and high eye pressure being one of the risk factors. Sulfonamides are carbonic anhydrase-II inhibitors that aim to decrease the secretion of aqueous humor by direct inhibition of this enzyme at the level of the ciliary processes. These drugs present undesirable effects that are difficult to accept by the patient. In our study, we are interested in the inhibition of carbonic anhydrase-II by different natural ligands (curcumin analogues) using molecular modeling methods using molecular operating environment (MOE) software to predict their interaction with this enzyme.

Keywords: carbonic anhydrase-II, curcumin analogues, drug research, molecular modeling

Procedia PDF Downloads 65
1485 Avoiding Gas Hydrate Problems in Qatar Oil and Gas Industry: Environmentally Friendly Solvents for Gas Hydrate Inhibition

Authors: Nabila Mohamed, Santiago Aparicio, Bahman Tohidi, Mert Atilhan

Abstract:

Qatar's one of the biggest problem in processing its natural resource, which is natural gas, is the often occurring blockage in the pipelines caused due to uncontrolled gas hydrate formation in the pipelines. Several millions of dollars are being spent at the process site to dehydrate the blockage safely by using chemical inhibitors. We aim to establish national database, which addresses the physical conditions that promotes Qatari natural gas to form gas hydrates in the pipelines. Moreover, we aim to design and test novel hydrate inhibitors that are suitable for Qatari natural gas and its processing facilities. From these perspectives we are aiming to provide more effective and sustainable reservoir utilization and processing of Qatari natural gas. In this work, we present the initial findings of a QNRF funded project, which deals with the natural gas hydrate formation characteristics of Qatari type gas in both experimental (PVTx) and computational (molecular simulations) methods. We present the data from the two fully automated apparatus: a gas hydrate autoclave and a rocking cell. Hydrate equilibrium curves including growth/dissociation conditions for multi-component systems for several gas mixtures that represent Qatari type natural gas with and without the presence of well known kinetic and thermodynamic hydrate inhibitors. Ionic liquids were designed and used for testing their inhibition performance and their DFT and molecular modeling simulation results were also obtained and compared with the experimental results. Results showed significant performance of ionic liquids with up to 0.5 % in volume with up to 2 to 4 0C inhibition at high pressures.

Keywords: gas hydrates, natural gas, ionic liquids, inhibition, thermodynamic inhibitors, kinetic inhibitors

Procedia PDF Downloads 1285
1484 Biodistribution Studies of 177Lu-DOTATOC in Mouse Tumor Model: Possible Utilization in Adenocarcinoma Breast Cancer Treatment

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri, S. Kakaei

Abstract:

Despite the appropriate characteristics of 177Lu and DOTATOC, to our best knowledge, the therapeutic benefit of 177Lu-DOTATOC complex in breast cancer has not been reported until now. In this study, biodistribution of 177Lu-DOTA-TOC in mouse tumor model for evaluation of possible utilization of this complex in breast cancer treatment was investigated.177Lu was prepared with the specific activity of 2.6-3 GBq.mg-1 and radionuclidic purity higher than 99%. The radiolabeled complex was prepared in the optimized conditions with the radiochemical purity higher than 99%. The final solution was injected to the BALB/c mice with adenocarcinoma breast cancer. The biodistribution results showed major accumulation in the kidneys as the major excretion route and the somatostatin receptor-positive tissues such as pancreas compared with the other tissues. Also, significant uptake was observed in tumor even in longer time after injection. According to the results obtained in this research study, somatostatin receptors expressed in breast cancers can be targeted with DOTATOC analogues especially with 177Lu-DOTATOC as an ideal therapeutic agent.

Keywords: ¹⁷⁷Lu, adenocarcinoma breast cancer, DOTATOC, BALB/c mice

Procedia PDF Downloads 198
1483 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry

Authors: M. A. Deyab

Abstract:

The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.

Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion

Procedia PDF Downloads 144
1482 Using Digitally Reconstructed Radiographs from Magnetic Resonance Images to Localize Pelvic Lymph Nodes on 2D X-Ray Simulator-Based Brachytherapy Treatment Planning

Authors: Mohammad Ali Oghabian, Reza Reiazi, Esmaeel Parsai, Mehdi Aghili, Ramin Jaberi

Abstract:

In this project a new procedure has been introduced for utilizing digitally reconstructed radiograph from MRI images in Brachytherapy treatment planning. This procedure enables us to localize the tumor volume and delineate the extent of critical structures in vicinity of tumor volume. The aim of this project was to improve the accuracy of dose delivered to targets of interest in 2D treatment planning system.

Keywords: brachytherapy, cervix, digitally reconstructed radiographs, lymph node

Procedia PDF Downloads 504
1481 Effects of Different Types of Perioperative Analgesia on Minimal Residual Disease Development After Colon Cancer Surgery

Authors: Lubomir Vecera, Tomas Gabrhelik, Benjamin Tolmaci, Josef Srovnal, Emil Berta, Petr Prasil, Petr Stourac

Abstract:

Cancer is the second leading cause of death worldwide and colon cancer is the second most common type of cancer. Currently, there are only a few studies evaluating the effect of postoperative analgesia on the prognosis of patients undergoing radical colon cancer surgery. Postoperative analgesia in patients undergoing colon cancer surgery is usually managed in two ways, either with strong opioids (morphine, piritramide) or epidural analgesia. In our prospective study, we evaluated the effect of postoperative analgesia on the presence of circulating tumor cells or minimal residual disease after colon cancer surgery. A total of 60 patients who underwent radical colon cancer surgery were enrolled in this prospective, randomized, two-center study. Patients were randomized into three groups, namely piritramide, morphine and postoperative epidural analgesia. We evaluated the presence of carcinoembryonic antigen (CEA) and cytokeratin 20 (CK-20) mRNA positive circulating tumor cells in peripheral blood before surgery, immediately after surgery, on postoperative day two and one month after surgery. The presence of circulating tumor cells was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). In the priritramide postoperative analgesia group, the presence of CEA mRNA positive cells was significantly lower on a postoperative day two compared to the other groups (p=0.04). The value of CK-20 mRNA positive cells was the same in all groups on all days. In all groups, both types of circulating tumor cells returned to normal levels one month after surgery. Demographic and baseline clinical characteristics were similar in all groups. Compared with morphine and epidural analgesia, piritramide significantly reduces the amount of CEA mRNA positive circulating tumor cells after radical colon cancer surgery.

Keywords: cancer progression, colon cancer, minimal residual disease, perioperative analgesia.

Procedia PDF Downloads 158
1480 Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma

Authors: Gabriele Ciasca, Tanya E. Sassun, Eleonora Minelli, Manila Antonelli, Massimiliano Papi, Antonio Santoro, Felice Giangaspero, Roberto Delfini, Marco De Spirito

Abstract:

Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions.

Keywords: AFM, nano-mechanics, nanomedicine, brain tumors, glioblastoma

Procedia PDF Downloads 316
1479 Liquid Biopsy and Screening Biomarkers in Glioma Grading

Authors: Abdullah Abdu Qaseem Shamsan

Abstract:

Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches.

Keywords: GBM: glioblastoma multiforme, CT: computed tomography, MRI: magnetic resonance imaging, ctRNA: circulating tumor RNA

Procedia PDF Downloads 11
1478 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 120
1477 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 343
1476 Expression Profiling and Immunohistochemical Analysis of Squamous Cell Carcinoma of Head and Neck (Tumor, Transition Zone, Normal) by Whole Genome Scale Sequencing

Authors: Veronika Zivicova, Petr Broz, Zdenek Fik, Alzbeta Mifkova, Jan Plzak, Zdenek Cada, Herbert Kaltner, Jana Fialova Kucerova, Hans-Joachim Gabius, Karel Smetana Jr.

Abstract:

The possibility to determine genome-wide expression profiles of cells and tissues opens a new level of analysis in the quest to define dysregulation in malignancy and thus identify new tumor markers. Toward this long-term aim, we here address two issues on this level for head and neck cancer specimen: i) defining profiles in different regions, i.e. the tumor, the transition zone and normal control and ii) comparing complete data sets for seven individual patients. Special focus in the flanking immunohistochemical part is given to adhesion/growth-regulatory galectins that upregulate chemo- and cytokine expression in an NF-κB-dependent manner, to these regulators and to markers of differentiation, i.e. keratins. The detailed listing of up- and down-regulations, also available in printed form (1), not only served to unveil new candidates for testing as marker but also let the impact of the tumor in the transition zone become apparent. The extent of interindividual variation raises a strong cautionary note on assuming uniformity of regulatory events, to be noted when considering therapeutic implications. Thus, a combination of test targets (and a network analysis for galectins and their downstream effectors) is (are) advised prior to reaching conclusions on further perspectives.

Keywords: galectins, genome scale sequencing, squamous cell carcinoma, transition zone

Procedia PDF Downloads 212
1475 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images

Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi

Abstract:

Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.

Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis

Procedia PDF Downloads 37
1474 Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization

Authors: L. M. Al-Harbi, A. M. Shokry, J. S. M. Sabir, A. Chaudhary, J. Manikandan, K. S. Saini

Abstract:

Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations.

Keywords: breast cancer, molecular biology, ecology, environment

Procedia PDF Downloads 350
1473 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography

Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz

Abstract:

Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.

Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic

Procedia PDF Downloads 77
1472 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 68
1471 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216b-5p Expression Level

Authors: Neda Menbari, Ramin Mehdiabadi

Abstract:

Background: breast cancer remains a critical global health issue, constituting a leading cause of cancer-related mortality in women. MicroRNAs (miRs) are natural RNA molecules that play an important role in cellular processes and regulate post-transcriptional gene expression. MiR-216b-5p is a miR that acts as a tumor suppressor. The expression levels of FoxM1 and miR-216b-5p in malignant and control cells have been evaluated by quantitative polymerase chain reaction (qPCR) technique and flow cytometry. Results: the results of this study revealed a significant downregulation of miR-216b-5p in cancerous cells compared to the control MCF-10A cells (P=0.0004). Interestingly, the expression of miR-216b-5p exhibited an inverse relationship with key clinical indicators such as tumor size, grade, and lymph node invasion. Conclusion: The study's findings showed the prognostic value of miR-216b-5p levels in breast cancer, and its reduced expression correlates with unfavorable tumor characteristics. This research recommends performing more studies on the role of FoxM1 and miR-216b-5p in breast cancer pathology which potentially paving the way for targeted therapeutic interventions.

Keywords: breast cancer, gene expression, FOXM1, microRNA

Procedia PDF Downloads 21
1470 Enzyme Inhibition Activity of Schiff Bases Against Mycobacterium Tuberculosis Using Molecular Docking

Authors: Imran Muhammad

Abstract:

The main cause of infectious disease in the modern world is Mycobacterium Tuberculosis (MT). To combat tuberculosis, new and efficient drugs are an urgent need in the modern world. Schif bases are potent for their biological pharmacophore activity. Thus we selected different Vanillin-based Schiff bases for their binding activity against target enzymes of Mycobacterium tuberculosis that is (DprE1 (decaprenyl phosphoryl-β-D-ribose 2′-epimerase), and DNA gyrase subunit-A), using molecular docking. We evaluate the inhibition potential, interaction, and binding mode of these compounds with the target enzymes.

Keywords: schiff bases, tuberculosis, DNA gyrase, DprE1, docking

Procedia PDF Downloads 48
1469 Evaluation of Osteoprotegrin (OPG) and Tumor Necrosis Factor A (TNF-A) Changes in Synovial Fluid and Serum in Dogs with Osteoarthritis; An Experimental Study

Authors: Behrooz Nikahval, Mohammad Saeed Ahrari-Khafi, Sakineh Behroozpoor, Saeed Nazifi

Abstract:

Osteoarthritis (OA) is a progressive and degenerative condition of the articular cartilage and other joints’ structures. It is essential to diagnose this condition as early as possible. The present research was performed to measure the Osteoprotegrin (OPG) and Tumor Necrosis Factor α (TNF-α) in synovial fluid and blood serum of dogs with surgically transected cruciate ligament as a model of OA, to evaluate if measuring of these parameters can be used as a way of early diagnosis of OA. In the present study, four mature, clinically healthy dogs were selected to investigate the effect of experimental OA, on OPG and TNF-α as a way of early detection of OA. OPG and TNF-α were measured in synovial fluid and blood serum on days 0, 14, 28, 90 and 180 after surgical transaction of cranial cruciate ligament in one stifle joint. Statistical analysis of the results showed that there was a significant increase in TNF-α in both synovial fluid and blood serum. OPG showed a decrease two weeks after OA induction. However, it fluctuated afterward. In conclusion, TNF-α could be used in both synovial fluid and blood serum as a way of early detection of OA; however, further research still needs to be conducted on OPG values in OA detection.

Keywords: osteoarthritis, osteoprotegrin, tumor necrosis factor α, synovial fluid, serum, dog

Procedia PDF Downloads 295
1468 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: features extraction, image segmentation, medical images, tumor detection

Procedia PDF Downloads 140
1467 In vitro Control of Mycosphaerella arachidis Deighton the Early Leaf Spot Disease Pathogen of Groundnut by the Extracts from Six Medicinal Plants

Authors: Matthew Omoniyi Adebola, Jude E Amadi

Abstract:

Ground nut (Arachis hypogaea) is one of the most popular commercial crops in Nigeria. Its suc-cessful production has been drastically affected by early leaf spot disease caused by Mycosphae-rella arachidis Deighton. In vitro control of the pathogen by six medicinal plants (Entada afri-cana, Vitex doniana, Lawsonia inermis, Azadirachta indica, Acalypha hispida and Nuaclea lati-folia) was assessed in this study. The extracts of the plants were prepared using cold and hot wa-ter and alcohol. The pathogen was isolated from ground nut infected with early leaf spot disease. The results revealed a great significant difference (P<0.05) in yield of extracts between cold water, hot water, and alcohol extracts. A significant difference (P<0.05) was observed in percentage concentrations of the various phytochemical constituents present in the extracts. Flavonoids per-centage concentration was the highest (0.68 - 1.95%) followed by saponnin(0.09-1.53%) in N. latifolia extracts. Steroiods had the least percentage concentrations (0.00- 0.09%)followed by terpenoids(0.02–0.71%) and proanthocyannin (0.05 – 0.86%). N. latifolia extracts produced the highest percentage concentrations (0.07–1.95%) of all the phytochemicals followed by A. indi-ca(0.05–1.64%)and least concentrations were obtained in A. hispidia(0.09 – 0.87%)and V. do-niana (0.00–0.88%). The extracts inhibited spore germination and growth of M. arachidis. The inhibition by alcohol extracts was high and significantly different (P>0.05) from cold and hot water extracts. Alcohol extract of L. inermis gave 100% spore germination inhibition followed by N. latifolia and A.indica with 97.75% and 85.60% inhibition respectively. Therefore, field trials of these six medicinal plants on the control of early leaf spot disease of ground nut are rec-ommended.

Keywords: groundnut, phytochemicals, medicinal plants, extracts, inhibition

Procedia PDF Downloads 268
1466 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds

Authors: Hany M. Abd El-Lateef

Abstract:

Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.

Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques

Procedia PDF Downloads 362