Search results for: transmission electron diffraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4342

Search results for: transmission electron diffraction

4252 Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound

Authors: Drissi Mokhtaria, Chouaih Abdelkader, Fodil Hamzaoui

Abstract:

Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods.

Keywords: electron charge density, m-nitrophenol, nonlinear optical compound, electrostatic potential, optimized geometric

Procedia PDF Downloads 244
4251 Synthesis, Structural and Magnetic Properties of CdFe2O4 Ferrite

Authors: Justice Zakhele Msomi

Abstract:

Nanoparticles of CdFe2O4 with particle size of about 10 nm have been synthesized by high energy ball milling and co-precipitation processes. The synthesis route appears to have some effects on the properties. The compounds have been characterized by X-ray diffraction, Fourier Transform Infrared (FTIR), transmission electron microscopy (TEM), Mössbauer and magnetization measurements. The XRD pattern of CdFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The FTIR measurements between 400 and 4000 cm-1 indicate intrinsic cation vibration of the spinel structure. The Mössbauer spectra were recorded at 4 K and 300 K. The hyperfine fields appear to be highly sensitive on particle size. The evolution of the properties as a function of particle size is also presented.

Keywords: ferrite, nanoparticles, magnetization, Mössbauer

Procedia PDF Downloads 370
4250 Ta-doped Nb2O5: Synthesis and Photocatalytic Activity

Authors: Mahendrasingh J. Pawar, M. D. Gaoner

Abstract:

Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance.

Keywords: Nb2O5, Ta-doped Nb2O5, photodegradation of Toluene, combustion method

Procedia PDF Downloads 534
4249 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites

Authors: A. Feliczak Guzik, I. Nowak

Abstract:

Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.

Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis

Procedia PDF Downloads 62
4248 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition

Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib

Abstract:

Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.

Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide

Procedia PDF Downloads 443
4247 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene

Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell

Abstract:

A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.

Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO

Procedia PDF Downloads 124
4246 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 148
4245 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite

Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati

Abstract:

In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.

Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method

Procedia PDF Downloads 511
4244 Visible-Light-Driven OVs-BiOCl Nanoplates with Enhanced Photocatalytic Activity toward NO Oxidation

Authors: Jiazhen Liao, Xiaolan Zeng

Abstract:

A series of BiOCl nanoplates with different oxygen vacancies (OVs) concentrations were successfully synthesized via a facile solvothermal method. The concentration of OVs of BiOCl can be tuned by the ratios of water/ethylene glycol. Such nanoplates containing oxygen vacancies served as an efficient visible-light-driven photocatalyst for NO oxidation. Compared with pure BiOCl, the enhanced photocatalytic performance was mainly attributed to the introduction of OVs, which greatly enhanced light absorption, promoted electron transfer, activated oxygen molecules. The present work could provide insights into the understanding of the role of OVs in photocatalysts for reference. Combined with characterization analysis, such as XRD(X-ray diffraction), XPS(X-ray photoelectron spectroscopy), TEM(Transmission Electron Microscopy), PL(Fluorescence Spectroscopy), and DFT (Density Functional Theory) calculations, the effect of vacancies on photoelectrochemical properties of BiOCl photocatalysts are shown. Furthermore, the possible reaction mechanisms of photocatalytic NO oxidation were also revealed. According to the results of in situ DRIFTS ( Diffused Reflectance Infrared Fourier Transform Spectroscopy), various intermediates were produced during different time intervals of NO photodegradation. The possible pathways are summarized below. First, visible light irradiation induces electron-hole pairs on the surface of OV-BOC (BiOCl with oxygen vacancies). Second, photogenerated electrons form superoxide radical with the contacted oxygen. Then, the NO molecules adsorbed on the surface of OV-BOC are attacked by superoxide radical and form nitrate instead of NO₂ (by-products). Oxygen vacancies greatly improve the photocatalytic oxidation activity of NO and effectively inhibit the production of harmful by-products during the oxidation of NO.

Keywords: OVs-BiOCl nanoplate, oxygen vacancies, NO oxidation, photocatalysis

Procedia PDF Downloads 103
4243 Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer

Authors: Emad A. Jaffar Al-Mulla

Abstract:

In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants.

Keywords: polycaprolactone, starch, biodegradable, nanocomposite

Procedia PDF Downloads 321
4242 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles

Authors: B. M. Patil

Abstract:

Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.

Keywords: CaZrO3, CZO, NO2, NH3

Procedia PDF Downloads 136
4241 Inventive Synthesis and Characterization of a Cesium Molybdate Compound: CsBi(MoO4)2

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Cesium molybdates with general formula CsMIII(MoO4)2, where MIII = Bi, Dy, Pr, Er, exhibit rich polymorphism, and crystallize in a layered structure. These properties cause intensive studies on cesium molybdates. CsBi(MoO4)2 was synthesized by microwave method by using cerium sulphate, bismuth oxide and molybdenum (VI) oxide in an appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).

Keywords: cesium bismuth dimolybdate, microwave synthesis, powder x-ray diffraction, rare earth dimolybdates

Procedia PDF Downloads 488
4240 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'

Authors: Minas Balyan

Abstract:

Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.

Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity

Procedia PDF Downloads 358
4239 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method

Authors: A. K. Paul, Vinod Kumar

Abstract:

Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.

Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties

Procedia PDF Downloads 102
4238 Preparation, Characterisation, and Antibacterial Activity of Green-Biosynthesised Silver Nanoparticles Using Clinacanthus Nutans Extract

Authors: Salahaedin Waiezi, Nik Ahmad Nizam Nik Malek, Hassan Abdelmagid Elzamzami, Shahrulnizahana Mohammad Din

Abstract:

A green and safe approach to the synthesis of silver nanoparticles (AgNP) can be performed using plant leaf extract as the reducing agent. Hence, this paper reports the biosynthesis of AgNP using Clinacanthus nutans plant extract. C. nutans is known as belalai gajah in Malaysia and is widely used as a medicinal herb locally. The biosynthesized AgNP, using C. nutans aqueous extract at pH 10, with the reaction temperature of 70°C and 48 h reaction time, was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). A peak appeared in the UV-Vis spectra at around 400 nm, while XRD confirmed the crystal structure of AgNP, with the average size between 20 to 30 nm, as shown in FESEM and TEM. The antibacterial activity of the biosynthesized AgNP, which was performed using the disc diffusion technique (DDT) indicated effective inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In contrast, minimal antibacterial activity was detected against Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA). In general, AgNP produced using C. nutans leaf extract possesses potential antibacterial activity.

Keywords: silver nanoparticles, Clinacanthus nutans, antibacterial agent, biosynthesis

Procedia PDF Downloads 168
4237 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 337
4236 Sol-Gel Derived ZnO Nanostructures: Optical Properties

Authors: Sheo K. Mishra, Rajneesh K. Srivastava, R. K. Shukla

Abstract:

In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications.

Keywords: ZnO, sol-gel, XRD, PL

Procedia PDF Downloads 352
4235 Gum Arabic-Coated Magnetic Nanoparticles for Methylene Blue Removal

Authors: Eman Alzahrani

Abstract:

Magnetic nanoparticles (MNPs) were fabricated using the chemical co-precipitation method followed by coating the surface of magnetic Fe3O4 nanoparticles with gum arabic (GA). The fabricated magnetic nanoparticles were characterised using transmission electron microscopy (TEM) which showed that the Fe3O4 nanoparticles and GA-MNPs nanoparticles had a mean diameter of 33 nm, and 38 nm, respectively. Scanning electron microscopy (SEM) images showed that the MNPs modified with GA had homogeneous structure and agglomerated. The energy dispersive X-ray spectroscopy (EDAX) spectrum showed strong peaks of Fe and O. X-ray diffraction patterns (XRD) indicated that the naked magnetic nanoparticles were pure Fe3O4 with a spinel structure and the covering of GA did not result in a phase change. The covering of GA on the magnetic nanoparticles was also studied by BET analysis, and Fourier transform infrared spectroscopy. Moreover, the present study reports a fast and simple method for removal and recovery of methylene blue dye (MB) from aqueous solutions by using the synthesised magnetic nanoparticles modified with gum arabic as adsorbent. The experimental results show that the adsorption process attains equilibrium within five minutes. The data fit the Langmuir isotherm equation and the maximum adsorption capacities were 8.77 mg mg-1 and 14.3 mg mg-1 for MNPs and GA-MNPs, respectively. The results indicated that the homemade magnetic nanoparticles were quite efficient for removing MB and will be a promising adsorbent for the removal of harmful dyes from waste-water.

Keywords: Fe3O4 magnetic nanoparticles, gum arabic, co-precipitation, adsorption dye, methylene blue, adsorption isotherm

Procedia PDF Downloads 401
4234 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 103
4233 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: hard magnet, Sr-ferrite, sol-gel auto-combustion, nano-powder

Procedia PDF Downloads 336
4232 Neutron Irradiated Austenitic Stainless Steels: An Applied Methodology for Nanoindentation and Transmission Electron Microscopy Studies

Authors: P. Bublíkova, P. Halodova, H. K. Namburi, J. Stodolna, J. Duchon, O. Libera

Abstract:

Neutron radiation-induced microstructural changes cause degradation of mechanical properties and the lifetime reduction of reactor internals during nuclear power plant operation. Investigating the effects of neutron irradiation on mechanical properties of the irradiated material (hardening, embrittlement) is challenging and time-consuming. Although the fast neutron spectrum has the major influence on microstructural properties, the thermal neutron effect is widely investigated owing to Irradiation-Assisted Stress Corrosion Cracking firstly observed in BWR stainless steels. In this study, 300-series austenitic stainless steels used as material for NPP's internals were examined after neutron irradiation at ~ 15 dpa. Although several nanoindentation experimental publications are available to determine the mechanical properties of ion irradiated materials, less is available on neutron irradiated materials at high dpa tested in hot-cells. In this work, we present particular methodology developed to determine the mechanical properties of neutron irradiated steels by nanoindentation technique. Furthermore, radiation-induced damage in the specimens was investigated by High Resolution - Transmission Electron Microscopy (HR-TEM) that showed the defect features, particularly Frank loops, cavity microstructure, radiation-induced precipitates and radiation-induced segregation. The results of nanoindentation measurements and associated nanoscale defect features showed the effect of irradiation-induced hardening. We also propose methodologies to optimized sample preparation for nanoindentation and microscotructural studies.

Keywords: nanoindentation, thermal neutrons, radiation hardening, transmission electron microscopy

Procedia PDF Downloads 131
4231 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling

Authors: Shahriar Ghammamy, Maryam Gholipoor

Abstract:

Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.

Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction

Procedia PDF Downloads 366
4230 Structural and Magnetic Properties of Bi0.82La0.2Fe1-xCrxO3 Nanoparticles

Authors: H. Nematifar, D. Sanavi Khoshnoud, S. Feyz

Abstract:

Bi0.82La0.2Fe1-xCrxO3 (BLFCxO, x = 0.0, 0.02, 0.05 and 0.08) nanoparticles were successfully synthesized by a sol-gel method. The X-ray diffraction (XRD) patterns indicate that the lattice parameters decrease for x ≤ 0.05, firstly, and then they increase for x > 0.05. A transformation from rhombohedral structure to orthorhombic structure occurs at x = 0.08. The transmission electron microscopy (TEM) analysis shows that the average nanoparticle size is about 60-70 nm. The remnant magnetisation (Mr) increases gradually with x to 0.02, then decreases with further increasing x up to 0.05, and finally enchases abruptly in x = 0.08. The coercivity (HC) increases gradually with x to 0.05, and then significantly reduced with increasing Cr substitution. The magnetic ordering temperature (TN) decreases with Cr doping concentration. The M-H curves of all samples exhibit a wasp-waist hysteresis loop in low magnetic region. This property can play an important role for the applications of some multiferroic nano-device.

Keywords: BiFeO3, sol-gel preparation, nanoparticles, magnetic materials, thermal analysis

Procedia PDF Downloads 285
4229 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles

Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi

Abstract:

Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.

Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization

Procedia PDF Downloads 361
4228 Carbon Nanocomposites : Structure, Characterization and Environmental Application

Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima

Abstract:

Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.

Keywords: carbon nanocomposite, chitozen, elimination, dyes

Procedia PDF Downloads 289
4227 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water

Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio

Abstract:

New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.

Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction

Procedia PDF Downloads 53
4226 Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group

Authors: Vida Jodaeian, Behzad Sani

Abstract:

Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds.

Keywords: nanoparticles, carrageenan, seaweed, nitro aromatic compound

Procedia PDF Downloads 371
4225 Influence of Cobalt Incorporation on the Structure and Properties of SOL-Gel Derived Mesoporous Bioglass Nanoparticles

Authors: Ahmed El-Fiqi, Hae-Won Kim

Abstract:

Incorporation of therapeutic elements such as Sr, Cu and Co into bioglass structure and their release as ions is considered as one of the promising approaches to enhance cellular responses, e.g., osteogenesis and angiogenesis. Here, cobalt as angiogenesis promoter has been incorporated (at 0, 1 and 4 mol%) into sol-gel derived calcium silicate mesoporous bioglass nanoparticles. The composition and structure of cobalt-free (CFN) and cobalt-doped (CDN) mesoporous bioglass nanoparticles have been analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-Transform Infra-red spectroscopy (FT-IR). The physicochemical properties of CFN and CDN have been investigated using high-resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), and Energy-dispersive X-ray (EDX). Furthermore, the textural properties, including specific surface area, pore-volume, and pore size, have been analyzed from N²⁻sorption analyses. Surface charges of CFN and CDN were also determined from surface zeta potential measurements. The release of ions, including Co²⁺, Ca²⁺, and SiO₄⁴⁻ has been analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Loading and release of diclofenac as an anti-inflammatory drug model were explored in vitro using Ultraviolet-visible spectroscopy (UV-Vis). XRD results ensured the amorphous state of CFN and CDN whereas, XRF further confirmed that their chemical compositions are very close to the designed compositions. HR-TEM analyses unveiled nanoparticles with spherical morphologies, highly mesoporous textures, and sizes in the range of 90 - 100 nm. Moreover, N²⁻ sorption analyses revealed that the nanoparticles have pores with sizes of 3.2 - 2.6 nm, pore volumes of 0.41 - 0.35 cc/g and highly surface areas in the range of 716 - 830 m²/g. High-resolution XPS analysis of Co 2p core level provided structural information about Co atomic environment and it confirmed the electronic state of Co in the glass matrix. ICP-AES analysis showed the release of therapeutic doses of Co²⁺ ions from 4% CDN up to 100 ppm within 14 days. Finally, diclofenac loading and release have ensured the drug/ion co-delivery capability of 4% CDN.

Keywords: mesoporous bioactive glass, nanoparticles, cobalt ions, release

Procedia PDF Downloads 84
4224 Carbon-Nanodots Modified Glassy Carbon Electrode for the Electroanalysis of Selenium in Water

Authors: Azeez O. Idris, Benjamin O. Orimolade, Potlako J. Mafa, Alex T. Kuvarega, Usisipho Feleni, Bhekie B. Mamba

Abstract:

We report a simple and cheaper method for the electrochemical detection of Se(IV) using carbon nanodots (CNDTs) prepared from oat. The carbon nanodots were synthesised by green and facile approach and characterised using scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The CNDT was used to fabricate an electrochemical sensor for the quantification of Se(IV) in water. The modification of glassy carbon electrode (GCE) with carbon nanodots led to an increase in the electroactive surface area of the electrode, which enhances the redox current peak of [Fe(CN)₆]₃₋/₄‒ in comparison to the bare GCE. Using the square wave voltammetry, the detection limit and quantification limit of 0.05 and 0.167 ppb were obtained under the optimised parameters using deposition potential of -200 mV, 0.1 M HNO₃ electrolyte, electrodeposition time of 60 s, and pH 1. The results further revealed that the GCE-CNDT was not susceptible to many interfering cations except Cu(II) and Pb(II), and Fe(II). The sensor fabrication involves a one-step electrode modification and was used to detect Se(IV) in a real water sample, and the result obtained is in agreement with the inductively coupled plasma technique. Overall, the electrode offers a cheap, fast, and sensitive way of detecting selenium in environmental matrices.

Keywords: carbon nanodots, square wave voltammetry, nanomaterials, selenium, sensor

Procedia PDF Downloads 62
4223 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound

Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui

Abstract:

We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.

Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro

Procedia PDF Downloads 278